• Title/Summary/Keyword: Regulatory T cell

Search Result 300, Processing Time 0.069 seconds

CRISPR/Cas9-mediated knockout of CD47 causes hemolytic anemia with splenomegaly in C57BL/6 mice

  • Kim, Joo-Il;Park, Jin-Sung;Kwak, Jina;Lim, Hyun-Jin;Ryu, Soo-Kyung;Kwon, Euna;Han, Kang-Min;Nam, Ki-Taek;Lee, Han-Woong;Kang, Byeong-Cheol
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.302-310
    • /
    • 2018
  • CD47 (integrin-associated protein), a multi-spanning transmembrane protein expressed in all cells including red blood cells (RBCs) and leukocytes, interacts with signal regulatory protein ${\alpha}$ ($SIRP{\alpha}$) on macrophages and thereby inhibits phagocytosis of RBCs. Recently, we generated a novel C57BL/6J CD47 knockout ($CD47^{-/-}$ hereafter) mouse line by employing a CRISPR/Cas9 system at Center for Mouse Models of Human Disease, and here report their hematological phenotypes. On monitoring their birth and development, $CD47^{-/-}$ mice were born viable with a natural male-to-female sex ratio and normally developed from birth through puberty to adulthood without noticeable changes in growth, food/water intake compared to their age and sex-matched wild-type littermates up to 26 weeks. Hematological analysis revealed a mild but significant reduction of RBC counts and hemoglobin in 16 week-old male $CD47^{-/-}$ mice which were aggravated at the age of 26 weeks with increased reticulocyte counts and mean corpuscular volume (MCV), suggesting hemolytic anemia. Interestingly, anemia in female $CD47^{-/-}$ mice became evident at 26 weeks, but splenomegaly was identified in both genders of $CD47^{-/-}$ mice from the age of 16 weeks, consistent with development of hemolytic anemia. Additionally, helper and cytotoxic T cell populations were considerably reduced in the spleen, but not in thymus, of $CD47^{-/-}$ mice, suggesting a crucial role of CD47 in proliferation of T cells. Collectively, these findings indicate that our $CD47^{-/-}$ mice have progressive hemolytic anemia and splenic depletion of mature T cell populations and therefore may be useful as an in vivo model to study the function of CD47.

Mitotic-Specific Methylation in the HeLa Cell through Loss of DNMTs and DMAP1 from Chromatin

  • Kim, Kee-Pyo;Kim, Gun-Do;Kang, Yong-Kook;Lee, Dong-Seok;Koo, Deog-Bon;Lee, Hoon-Taek;Chung, Kil-Saeng;Lee, Kyung-Kwang;Han, Yong-Mahn
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.27-27
    • /
    • 2003
  • A diversified and concentrative approach of methylation player can be one of the most powerful studies in the understanding of global epigenetic modifications. Previous studies have suggested that DNA methylation contributes to transcriptional silencing through the several DNA methylation-mediated repression systems by hypermethylation, including methyltransferases (DNMTs), DNA methyltransferase association protein 1 (DMAPl), methyl-CpG binding domain (MBD), and histone deacetylases (HDACs). Assembly of these regulatory protein complexes act sequentially, reciprocally, and interdependently on the newly composed DNA strand through S phase. Therefore, these protein complexes have a role in coupling DNA replication to the designed turn-off system in genome. In this study, we attempted to address the role of DNA methylation by the functional analysis of the methyltransferase molecule, we described the involvement of DMAP1 and DNMTs in cell divistion and the effect of their loss. We also described distinct patterns that DMAP1 and DNMTs are spatially reorganized and displaced from condensing chromosomes as cells progress through mitosis in HeLa cell, COS7, and HIH3T3 cell cycle progressions. DNMT1, DNMT3b, and DMAP1 do not stably contact the genetic material during chromosome compaction and repressive expression. These finding show that the loss of activities of DNMTs and DMAP1 occure stage specifically during the cell cycle, may contribute to the integral balance of global DNA methylation. This is consistent with previous studies resulted in decreased histone acetyltransferases and HDACs, and differs from studies resulted in increased histone methyltransferases. Our results suggest that DNA methylation by DNMTs and DMAP1 during mitosis acts to antagonize hypermethylation by which this mark is epigenetical mitotic-specific methylation.

  • PDF

Prognostic Significance of Desmoglein 2 and Desmoglein 3 in Esophageal Squamous Cell Carcinoma

  • Fang, Wang-Kai;Gu, Wei;Liao, Lian-Di;Chen, Bo;Wu, Zhi-Yong;Wu, Jian-Yi;Shen, Jian;Xu, Li-Yan;Li, En-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.871-876
    • /
    • 2014
  • Objective: Desmogleins (DSGs) are major members among the desmosomal cadherins critically involved in cell-cell adhesion and the maintenance of normal tissue architecture in epithelia. Reports exploring links of DSG family member expression with cancers are few and vary. The aim of this study was to investigate the ratio of DSG2 and DSG3 mRNA expression in esophageal squamous cell carcinoma (ESCC) tissue to normal tissue (T/N ratio) and evaluate correlations with clinical parameters. Methods: The mRNA expression of DSGs, as well as ${\gamma}$-catenin and desmoplakin, was detected by real-time quantitative RT-PCR in 85 cases of ESCC tissue specimens. Results: The expression level of DSG3 mRNA was significantly higher than that of DSG2 in ESCC specimens (p=0.000). DSG3 mRNA expression highly correlated with histological grade (p=0.009), whereas that of DSG2 did not significantly relate to any clinicopathologic parameter. Kaplan-Meier survival analysis showed that only DSG3 expression had an impact on the survival curve, with negative DSG3 expression indicating worse survival (p=0.038). Multivariate Cox regression analysis demonstrated DSG3 to be an independent prognostic factor for survival. Furthermore, correlation analysis demonstrated the mRNA level of DSG3 to highly correlate with those of ${\gamma}$-catenin and desmoplakin in ESCC samples (p=0.000), implying that the expression of desmosomal components might be regulated by the same upstream regulatory molecules. Conclusions: Our findings suggest that DSG3 may be involved in the progression of ESCC and serve as a prognostic marker, while expression of DSG2 cannot be used as a predictor of ESCC patient outcome.

Evaluation of the Anti-obesity Activity of Platycodon grandiflorum Root and Curcuma longa Root Fermented with Aspergillus oryzae (도라지, 울금의 Aspergillus oryzae 발효에 의한 항비만효과 연구)

  • Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Tae Woo;Yang, Chun Su;Choe, Myeon
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.111-118
    • /
    • 2015
  • In the present study, the phenolic compound level, antioxidant activity, and inhibition of lipid accumulation in Aspergillus oryzae-fermented water extracts of the Platycodon grandiflorum (PG) root and the Curcuma longa (CL) root were determined. Total polyphenol and flavonoid contents were decreased after fermentation. However, the flavonoid content of the fermented PG (FPG) was increased by 2.9-fold that of the PG before fermentation. In addition, the antioxidant activities were significantly decreased following fermentation. The potential anti-obesity activity was assessed by determining lipid accumulation and mRNA expression of sterol regulatory element-binding protein 1c (SREBP-1c) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) in 3T3-L1 cells. Aspergillus-fermented extracts of PG and CL roots decreased lipid accumulation, and mRNA expression of SREBP-1c and $PPAR{\gamma}$ in 3T3-L1 cells. These results indicate that Aspergillus fermentation augments the anti-obesity activity of PG and CL by regulating the expression of the genes involved in lipid accumulation and cell differentiation of 3T3-L1 cells.

Bioconversion of Citrus unshiu peel extracts with cytolase suppresses adipogenic activity in 3T3-L1 cells

  • Lim, Heejin;Yeo, Eunju;Song, Eunju;Chang, Yun-Hee;Han, Bok-Kyung;Choi, Hyuk-Joon;Hwang, Jinah
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.599-605
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Citrus flavonoids have a variety of physiological properties such as anti-oxidant, anti-inflammation, anti-cancer, and anti-obesity. We investigated whether bioconversion of Citrus unshiu with cytolase (CU-C) ameliorates the anti-adipogenic effects by modulation of adipocyte differentiation and lipid metabolism in 3T3-L1 cells. MATERIALS/METHODS: Glycoside forms of Citrus unshiu (CU) were converted into aglycoside forms with cytolase treatment. Cell viability of CU and CU-C was measured at various concentrations in 3T3L-1 cells. The anti-adipogenic and lipolytic effects were examined using Oil red O staining and free glycerol assay, respectively. We performed real time-polymerase chain reaction and western immunoblotting assay to detect mRNA and protein expression of adipogenic transcription factors, respectively. RESULTS: Treatment with cytolase decreased flavanone rutinoside forms (narirutin and hesperidin) and instead, increased flavanone aglycoside forms (naringenin and hesperetin). During adipocyte differentiation, 3T3-L1 cells were treated with CU or CU-C at a dose of 0.5 mg/ml. Adipocyte differentiation was inhibited in CU-C group, but not in CU group. CU-C markedly suppressed the insulin-induced protein expression of CCAAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) as well as the mRNA levels of $CEBP{\alpha}$, $PPAR{\gamma}$, and sterol regulatory element binding protein 1c (SREBP1c). Both CU and CU-C groups significantly increased the adipolytic activity with the higher release of free glycerol than those of control group in differentiated 3T3-L1 adipocytes. CU-C is particularly superior in suppression of adipogenesis, whereas CU-C has similar effect to CU on stimulation of lipolysis. CONCLUSIONS: These results suggest that bioconversion of Citrus unshiu peel extracts with cytolase enhances aglycoside flavonoids and improves the anti-adipogenic metabolism via both inhibition of key adipogenic transcription factors and induction of adipolytic activity.

Red pepper seed water extract inhibits preadipocyte differentiation and induces mature adipocyte apoptosis in 3T3-L1 cells

  • Kim, Hwa-Jin;You, Mi-Kyoung;Lee, Young-Hyun;Kim, Hyun-Jung;Adhikari, Deepak;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.12 no.6
    • /
    • pp.494-502
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Reducing the number of adipocytes by inducing apoptosis of mature adipocytes as well as suppressing differentiation of preadipocytes plays an important role in preventing obesity. This study examines the anti-adipogenic and pro-apoptotic effect of red pepper seed water extract (RPS) prepared at $4^{\circ}C$ (RPS4) in 3T3-L1 cells. MATERIALS/METHODS: Effect of RPS4 or its fractions on lipid accumulation was determined in 3T3-L1 cells using oil red O (ORO) staining. The expressions of AMP-activated protein kinase (AMPK) and adipogenic associated proteins [peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR-{\gamma}$), CCAAT/enhancer-binding proteins ${\alpha}$ (C/EBP ${\alpha}$), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)] were measured in 3T3-L1 cells treated with RPS4. Apoptosis and the expression of Akt and Bcl-2 family proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad), Bcl-2 like protein 4 (Bax), Bal-2 homologous antagonist/killer (Bak)] were measured in mature 3T3-L1 cells treated with RPS4. RESULTS: Treatment of RPS4 ($0-75{\mu}g/mL$) or its fractions ($0-50{\mu}g/mL$) for 24 h did not have an apparent cytotoxicity on pre and mature 3T3-L1 cells. RPS4 significantly suppressed differentiation and cellular lipid accumulation by increasing the phosphorylation of AMPK and reducing the expression of $PPAR-{\gamma}$, C/EBP ${\alpha}$, SREBP-1c, FAS, and ACC. In addition, all fractions except ethyl acetate fraction significantly suppressed cellular lipid accumulation. RPS4 induced the apoptosis of mature adipocytes by hypophosphorylating Akt, increasing the expression of the pro-apoptotic proteins, Bak, Bax, and Bad, and reducing the expression of the anti-apoptotic proteins, Bcl-2 and p-Bad. CONCLUSIONS: These finding suggest that RPS4 can reduce the numbers as well as the size of adipocytes and might useful for preventing and treating obesity.

Extract of Ranunculus sceleratus Reduced Adipogenesis by Inhibiting AMPK Pathway in 3T3-L1 Preadipocytes (3T3-L1 전구지방세포에서 개구리자리(Ranunculus sceleratus) 추출물의 AMPK 신호전달을 통한 지방생성 억제 효과)

  • Kim, Yae-Ji;Cho, Sung-Pil;Lee, Hui-Ju;Hong, Geum-Lan;Kim, Kyung-Hyun;Ryu, Si-Yun;Jung, Ju-Young
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.22 no.1
    • /
    • pp.30-37
    • /
    • 2022
  • Objectives: Adipogenesis is the process by which pre-adipocytes are differentiated into adipocytes. It also plays an important role in adipocyte formation and lipid accumulation. Ranunculus sceleratus (R. sceleratus) extracts are used for the treatment of various diseases such as hepatitis, jaundice, and tuberous lymphadenitis in oriental medicine. However, its effect on adipogenesis has not yet been studied. In this study, we investigated the effects of R. sceleratus on adipogenesis in 3T3-L1 cells. Methods: Cells were treated with 50, 100, and 200 ㎍/ml of R. sceleratus and cell viability was evaluated. To differentiate the 3T3-L1 preadipocytes, a 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI) solution were used. The accumulation of lipid droplets was determined by Oil Red O staining. The expression levels of adipogenesis-related proteins were also determined. Results: MDI solution differentiated the preadipocytes into adipocytes and accumulation of lipids was observed in the differentiated 3T3-L1 cells. Interestingly, the amount of lipid droplets was reduced after R. sceleratus treatment. In addition, the expression levels of key adipogenic transcription factors, such as CCAAT/enhancer-binding proteins-𝛼 (C/EBP-𝛼) and peroxisome proliferator-activated receptors-𝛾 (PPAR-𝛾) were also reduced after R. sceleratus treatment. Furthermore, R. sceleratus increased AMP-activated kinase (AMPK) phosphorylation and decreased sterol regulatory element-binding protein-1 expression. Conclusions: Our results showed that R. sceleratus reduced preadipocyte differentiation by inhibiting C/EBP-𝛼 and PPAR-𝛾 levels via the AMPK pathway. Therefore, we suggest that R. sceleratus may be potentially used as an anti-adipogenic agent.

Photoimmunology -Past, Present and Future-

  • Daynes, Raymond A.;Chung, Hun-Taeg;Roberts, Lee K.
    • The Journal of the Korean Society for Microbiology
    • /
    • v.21 no.3
    • /
    • pp.311-329
    • /
    • 1986
  • The experimental exposure of animals to sources of ultraviolet radiation (UVR) which emit their energy primarily in the UVB region (280-320nm) is known to result in a number of well-described changes in the recipient's immune competence. Two such changes include a depressed capacity to effectively respond immunologically to transplants of syngeneic UVR tumors and a markedly reduced responsiveness to known inducers of delayedtype (DTH) and contact hypersensitivity (CH) reactions. The results of experiments that were designed to elucidate the mechanisms responsible for UVR-induced immunomodulation have implicated: 1) an altered pattern of lymphocyte recirculation, 2) suppressor T cells(Ts), 3) deviations in systemic antigen presenting cell (APC) potential. 4) changes in the production of interleukin-1-like molecules, and 5) the functional inactivation of epidermal Langerhans cells in this process. The exposure of skin to UVR, therefore, causes a number of both local and systemic alterations to the normal host immune system. In spite of this seeming complexity and diversity of responses, our recent studies have established that each of the UVR-mediated changes is probably of equal importance to creating the UVR-induced immunocompromised state. Normal animals were exposed to low dose UVR radiation on their dorsal surfaces under conditions where a $3.0\;cm^2$ area of skin was physically protected from the light energy. Contact sensitization of these animals with DNFB, to either the irradiated or protected back skin, resulted in markedly reduced CH responses. This was observed in spite of a normal responsiveness following the skin sensitization to ventral surfaces of the UVR-exposed animals. Systemic treatment of the low dose UVR recipients with the drug indomethacin (1-3 micrograms/day) during the UVR exposures resulted in a complete reversal of the depressions observed following DNFB sensitization to "protected" dorsal skin while the altered responsiveness found in the group exposed to the skin reactive chemical through directly UVR-exposed sites was maintained. These studies implicate the importance of EC as effective APC in the skin and also suggest that some of the systemic influences caused by UVR exposure involve the production of prostaglandins. This concept was further supported by finding that indomethacin treatment was also capable of totally reversing the systemic depressions in CH responsiveness caused by high dose UVR exposure (30K joules/$m^2$) of mice. Attempts to analyze the cellular mechanisms responsible established that the spleens of all animals which demonstrated altered CH responses, regardless of whether sensitization was through a normal or an irradiated skin site, contained suppressor cells. Interestingly, we also found normal levels of T effector cells in the peripheral lymph nodes of the UVR-exposed mice that were contact sensitized through normal skin. No effector cells were found when skin sensitization took place through irradiated skin sites. In spite of such an apparent paradox, insight into the probable mechanisms responsible for these observations was provided by establishing that UVR exposure of skin results in a striking and dose-dependent blockade of the efferent lymphatic vessels in all peripheral lymph nodes. Therefore, the afferent phases of immune responses can apparently take place normally in UVR exposed animals when antigen is applied to normal skin. The final effector responses, however, appear to be inhibited in the UVR-exposed animals by an apparent block of effector cell mobility. This contrasts with findings in the normal animals. Following contact sensitization, normal animals were also found to simultaneously contain both antigen specific suppressor T cells and lymph node effector cells. However, these normal animals were fully capable of mobilizing their effector cells into the systemic circulation, thereby allowing a localization of these cells to peripheral sites of antigen challenge. Our results suggest that UVR is probably not a significant inducer of suppressor T-cell activity to topically applied antigens. Rather, UVR exposure appears to modify the normal relationship which exists between effector and regulatory immune responses in vivo. It does so by either causing a direct reduction in the skin's APC function, a situation which results in an absence of effector cell generation to antigens applied to UVR-exposed skin sites, inhibiting the capacity of effector cells to gain access to skin sites of antigen challenge or by sequestering the lymphocytes with effector cell potential into the draining peripheral lymph nodes. Each of these situations result in a similar effect on the UVR-exposed host, that being a reduced capacity to elicit a CH response. We hypothesize that altered DTH responses, altered alloresponses, and altered graft-versus-host responses, all of which have been observed in UVR exposed animals, may result from similar mechanisms.

  • PDF

Recent Advancement in the Stem Cell Biology (Stem Cell Biology, 최근의 진보)

  • Harn, Chang-Yawl
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.195-207
    • /
    • 2006
  • Stem cells are the primordial, initial cells which usually divide asymmetrically giving rise to on the one hand self-renewals and on the other hand progenitor cells with potential for differentiation. Zygote (fertilized egg), with totipotency, deserves the top-ranking stem cell - he totipotent stem cell (TSC). Both the ICM (inner cell mass) taken from the 6 days-old human blastocyst and ESC (embryonic stem cell) derived from the in vitro cultured ICM have slightly less potency for differentiation than the zygote, and are termed pluripotent stem cells. Stem cells in the tissues and organs of fetus, infant, and adult have highly reduced potency and committed to produce only progenitor cells for particular tissues. These tissue-specific stem cells are called multipotent stem cells. These tissue-specific/committed multipotent stem cells, when placed in altered environment other than their original niche, can yield cells characteristic of the altered environment. These findings are certainly of potential interest from the clinical, therapeutic perspective. The controversial terminology 'somatic stem cell plasticity' coined by the stem cell community seems to have been proved true. Followings are some of the recent knowledges related to the stem cell. Just as the tissues of our body have their own multipotent stem cells, cancerous tumor has undifferentiated cells known as cancer stem cell (CSC). Each time CSC cleaves, it makes two daughter cells with different fate. One is endowed with immortality, the remarkable ability to divide indefinitely, while the other progeny cell divides occasionally but lives forever. In the cancer tumor, CSC is minority being as few as 3-5% of the tumor mass but it is the culprit behind the tumor-malignancy, metastasis, and recurrence of cancer. CSC is like a master print. As long as the original exists, copies can be made and the disease can persist. If the CSC is destroyed, cancer tumor can't grow. In the decades-long cancer therapy, efforts were focused on the reducing of the bulk of cancerous growth. How cancer therapy is changing to destroy the origin of tumor, the CSC. The next generation of treatments should be to recognize and target the root cause of cancerous growth, the CSC, rather than the reducing of the bulk of tumor, Now the strategy is to find a way to identify and isolate the stem cells. The surfaces of normal as well as the cancer stem cells are studded with proteins. In leukaemia stem cell, for example, protein CD 34 is identified. In the new treatment of cancer disease it is needed to look for protein unique to the CSC. Blocking the stem cell's source of nutrients might be another effective strategy. The mystery of sternness of stem cells has begun to be deciphered. ESC can replicate indefinitely and yet retains the potential to turn into any kind of differentiated cells. Polycomb group protein such as Suz 12 repress most of the regulatory genes which, activated, are turned to be developmental genes. These protein molecules keep the ESC in an undifferentiated state. Many of the regulator genes silenced by polycomb proteins are also occupied by such ESC transcription factors as Oct 4, Sox 2, and Nanog. Both polycomb and transcription factor proteins seem to cooperate to keep the ESC in an undifferentiated state, pluripotent, and self-renewable. A normal prion protein (PrP) is found throughout the body from blood to the brain. Prion diseases such as mad cow disease (bovine spongiform encephalopathy) are caused when a normal prion protein misfolds to give rise to PrP$^{SC}$ and assault brain tissue. Why has human body kept such a deadly and enigmatic protein? Although our body has preserved the prion protein, prion diseases are of rare occurrence. Deadly prion diseases have been intensively studied, but normal prion problems are not. Very few facts on the benefit of prion proteins have been known so far. It was found that PrP was hugely expressed on the stem cell surface of bone marrow and on the cells of neural progenitor, PrP seems to have some function in cell maturation and facilitate the division of stem cells and their self-renewal. PrP also might help guide the decision of neural progenitor cell to become a neuron.

Generation of 1E8 Single Chain Fv-Fc Construct Against Human CD59

  • Hong, Jeong-Won;Cho, Woon-Dong;Hong, Kwon-Pyo;Kim, So-Seul;Son, Seung-Myoung;Yun, Seok-Joong;Lee, Ho-Chang;Yoon, Sang-Soon;Song, Hyung-Geun
    • IMMUNE NETWORK
    • /
    • v.12 no.1
    • /
    • pp.33-39
    • /
    • 2012
  • Background: Therapeutic approaches using monoclonal antibodies (mAbs) against complement regulatory proteins (CRPs:i.e.,CD46,CD55 and CD59) have been reported for adjuvant cancer therapy. In this study, we generated a recombinant 1E8 single-chain anti-CD59 antibody (scFv-Fc) and tested anti-cancer effect.by using complement dependent cytotoxicity (CDC). Methods: We isolated mRNA from 1E8 hybridoma cells and amplified the variable regions of the heavy chain (VH) and light chain (VL) genes using reversetranscriptase polymerase chain reaction (RT-PCR). Using a linker, the amplified sequences for the heavy and light chains were each connected to the sequence for a single polypeptide chain that was designed to be expressed. The VL and VH fragments were cloned into the pOptiVEC-TOPO vector that contained the human CH2-CH3 fragment. Then, 293T cells were transfected with the 1E8 single-chain Fv-Fc (scFv-Fc) constructs. CD59 expression was evaluated in the prostate cancer cell lines using flow cytometry. The enhancement of CDC effect by mouse 1E8 and 1E8 scFv-Fc were evaluated using a cytotoxicity assay. Results: The scFv-Fc constructs were expressed by the transfected 293T cells and secreted into the culture medium. The immunoreactivity of the secreted scFv-Fc construct was similar to that of the mouse 1E8 for CCRF-CEM cells. The molecular masses of 1E8 scFv-Fc were about 120 kDa and 55 kDa under reducing and non-reducing conditions, respectively. The DNA sequence of 1E8 scFv-Fc was obtained and presented. CD59 was highly expressed by the prostate cancer cell line. The recombinant 1E8 scFv-Fc mAb revealed significantly enhanced CDC effect similar with mouse 1E8 for prostate cancer cells. Conclusion: A 1E8 scFv-Fc construct for adjuvant cancer therapy was developed.