• Title/Summary/Keyword: Regularly varying function and Borel-Cantelli lemma

Search Result 2, Processing Time 0.015 seconds

Superior and Inferior Limits on the Increments of Gaussian Processes

  • Park, Yong-Kab;Hwang, Kyo-Shin;Park, Soon-Kyu
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.1
    • /
    • pp.57-74
    • /
    • 1997
  • Csorgo-Revesz type theorems for Wiener process are developed to those for Gaussian process. In particular, some results of superior and inferior limits for the increments of a Gaussian process are differently obtained under mild conditions, via estimating probability inequalities on the suprema of a Gaussian process.

  • PDF

Extreme values of a gaussian process

  • Choi, Y.K.;Hwang, K.S.;Kang, S.B.
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.739-751
    • /
    • 1995
  • Let ${X(t) : 0 \leq t < \infty}$ be an almost surely continuous Gaussian process with X(0) = 0, E{X(t)} = 0 and stationary increments $E{X(t) - X(s)}^2 = \sigma^2($\mid$t - s$\mid$)$, where $\sigma(y)$ is a function of $y \geq 0(e.g., if {X(t);0 \leq t < \infty}$ is a standard Wiener process, then $\sigma(t) = \sqrt{t})$. Assume that $\sigma(t), t > 0$, is a nondecreasing continuous, regularly varying function at infinity with exponent $\gamma$ for some $0 < \gamma < 1$.

  • PDF