• Title/Summary/Keyword: Regularized linear regression

Search Result 4, Processing Time 0.02 seconds

Application of Regularized Linear Regression Models Using Public Domain data for Cycle Life Prediction of Commercial Lithium-Ion Batteries (상업용 리튬 배터리의 수명 예측을 위한 고속대량충방전 데이터 정규화 선형회귀모델의 적용)

  • KIM, JANG-GOON;LEE, JONG-SOOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.592-611
    • /
    • 2021
  • In this study a rarely available high-throughput cycling data set of 124 commercial lithium iron phosphate/graphite cells cycled under fast-charging conditions, with widely varying cycle lives ranging from 150 to 2,300 cycles including in-cycle temperature and per-cycle IR measurements. We worked out own Python codes which reproduced the various data plots and machine learning approaches for cycle life prediction using early cycles and more details not presented in the article and the supplementary information. Particularly, we applied regularized ridge, lasso and elastic net linear regression models using features extracted from capacity fade curves, discharge voltage curves, and other data such as internal resistance and cell can temperature. We found that due to the limitation in the quantity and quality of the data from costly and lengthy battery testing a careful hyperparameter tuning may be required and that model features need to be extracted based on the domain knowledge.

Principal component regression for spatial data (공간자료 주성분분석)

  • Lim, Yaeji
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.311-321
    • /
    • 2017
  • Principal component analysis is a popular statistical method to reduce the dimension of the high dimensional climate data and to extract meaningful climate patterns. Based on the principal component analysis, we can further apply a regression approach for the linear prediction of future climate, termed as principal component regression (PCR). In this paper, we develop a new PCR method based on the regularized principal component analysis for spatial data proposed by Wang and Huang (2016) to account spatial feature of the climate data. We apply the proposed method to temperature prediction in the East Asia region and compare the result with conventional PCR results.

Effect of outliers on the variable selection by the regularized regression

  • Jeong, Junho;Kim, Choongrak
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.2
    • /
    • pp.235-243
    • /
    • 2018
  • Many studies exist on the influence of one or few observations on estimators in a variety of statistical models under the "large n, small p" setup; however, diagnostic issues in the regression models have been rarely studied in a high dimensional setup. In the high dimensional data, the influence of observations is more serious because the sample size n is significantly less than the number variables p. Here, we investigate the influence of observations on the least absolute shrinkage and selection operator (LASSO) estimates, suggested by Tibshirani (Journal of the Royal Statistical Society, Series B, 73, 273-282, 1996), and the influence of observations on selected variables by the LASSO in the high dimensional setup. We also derived an analytic expression for the influence of the k observation on LASSO estimates in simple linear regression. Numerical studies based on artificial data and real data are done for illustration. Numerical results showed that the influence of observations on the LASSO estimates and the selected variables by the LASSO in the high dimensional setup is more severe than that in the usual "large n, small p" setup.

Modelling the deflection of reinforced concrete beams using the improved artificial neural network by imperialist competitive optimization

  • Li, Ning;Asteris, Panagiotis G.;Tran, Trung-Tin;Pradhan, Biswajeet;Nguyen, Hoang
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.733-745
    • /
    • 2022
  • This study proposed a robust artificial intelligence (AI) model based on the social behaviour of the imperialist competitive algorithm (ICA) and artificial neural network (ANN) for modelling the deflection of reinforced concrete beams, abbreviated as ICA-ANN model. Accordingly, the ICA was used to adjust and optimize the parameters of an ANN model (i.e., weights and biases) aiming to improve the accuracy of the ANN model in modelling the deflection reinforced concrete beams. A total of 120 experimental datasets of reinforced concrete beams were employed for this aim. Therein, applied load, tensile reinforcement strength and the reinforcement percentage were used to simulate the deflection of reinforced concrete beams. Besides, five other AI models, such as ANN, SVM (support vector machine), GLMNET (lasso and elastic-net regularized generalized linear models), CART (classification and regression tree) and KNN (k-nearest neighbours), were also used for the comprehensive assessment of the proposed model (i.e., ICA-ANN). The comparison of the derived results with the experimental findings demonstrates that among the developed models the ICA-ANN model is that can approximate the reinforced concrete beams deflection in a more reliable and robust manner.