• 제목/요약/키워드: Regression trees

검색결과 251건 처리시간 0.024초

Comparison of tree-based ensemble models for regression

  • Park, Sangho;Kim, Chanmin
    • Communications for Statistical Applications and Methods
    • /
    • 제29권5호
    • /
    • pp.561-589
    • /
    • 2022
  • When multiple classifications and regression trees are combined, tree-based ensemble models, such as random forest (RF) and Bayesian additive regression trees (BART), are produced. We compare the model structures and performances of various ensemble models for regression settings in this study. RF learns bootstrapped samples and selects a splitting variable from predictors gathered at each node. The BART model is specified as the sum of trees and is calculated using the Bayesian backfitting algorithm. Throughout the extensive simulation studies, the strengths and drawbacks of the two methods in the presence of missing data, high-dimensional data, or highly correlated data are investigated. In the presence of missing data, BART performs well in general, whereas RF provides adequate coverage. The BART outperforms in high dimensional, highly correlated data. However, in all of the scenarios considered, the RF has a shorter computation time. The performance of the two methods is also compared using two real data sets that represent the aforementioned situations, and the same conclusion is reached.

단일특징 분할 회귀트리의 학습성능 개선을 위한 회귀신경망 (Regression Neural Networks for Improving the Learning Performance of Single Feature Split Regression Trees)

  • 임숙;김성천
    • 전자공학회논문지B
    • /
    • 제33B권1호
    • /
    • pp.187-194
    • /
    • 1996
  • 본 논문은 회귀트리에 기반을 둔 회귀 신경망을 제안한다. 회귀트리를 세 개의 계층을 갖는 전향 신경망에 사상하고, 첫 번째 계층에 다중특징 분할함수를 형성시켜 신경망이 보다 더 최적인 입력 공간의 분할을 갖도록 한다. 본 연구에서는 신경망 트레이닝을 위한 두 가지 지도 학습 알고리즘을 제안하여 단일특징 분할함수와 다중특징 분할함수에 실험한다. 실험결과, 제안된 회귀 신경망은 기존의 단일특징 분할 회귀트리 및 단일특징 분할 회귀신경망보다 학습능력이 우수함을 입증한다. 또한 본 논문에서 제안한 알고리즘이 학습 능력을 저하시키지 않으면서도 효과적으로 과성장한 회귀트리를 가지치기 할 수 있음을 보인다.

  • PDF

A review of tree-based Bayesian methods

  • Linero, Antonio R.
    • Communications for Statistical Applications and Methods
    • /
    • 제24권6호
    • /
    • pp.543-559
    • /
    • 2017
  • Tree-based regression and classification ensembles form a standard part of the data-science toolkit. Many commonly used methods take an algorithmic view, proposing greedy methods for constructing decision trees; examples include the classification and regression trees algorithm, boosted decision trees, and random forests. Recent history has seen a surge of interest in Bayesian techniques for constructing decision tree ensembles, with these methods frequently outperforming their algorithmic counterparts. The goal of this article is to survey the landscape surrounding Bayesian decision tree methods, and to discuss recent modeling and computational developments. We provide connections between Bayesian tree-based methods and existing machine learning techniques, and outline several recent theoretical developments establishing frequentist consistency and rates of convergence for the posterior distribution. The methodology we present is applicable for a wide variety of statistical tasks including regression, classification, modeling of count data, and many others. We illustrate the methodology on both simulated and real datasets.

퍼지의사결정을 이용한 RC구조물의 건전성평가 (Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making)

  • 박철수;손용우;이증빈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.274-283
    • /
    • 2002
  • This paper presents an efficient models for reinforeced concrete structures using CART-ANFIS(classification and regression tree-adaptive neuro fuzzy inference system). a fuzzy decision tree parttitions the input space of a data set into mutually exclusive regions, each of which is assigned a label, a value, or an action to characterize its data points. Fuzzy decision trees used for classification problems are often called fuzzy classification trees, and each terminal node contains a label that indicates the predicted class of a given feature vector. In the same vein, decision trees used for regression problems are often called fuzzy regression trees, and the terminal node labels may be constants or equations that specify the Predicted output value of a given input vector. Note that CART can select relevant inputs and do tree partitioning of the input space, while ANFIS refines the regression and makes it everywhere continuous and smooth. Thus it can be seen that CART and ANFIS are complementary and their combination constitutes a solid approach to fuzzy modeling.

  • PDF

대용량 화학 데이터 베이스를 선별하기위한 결합다중회귀나무 예측치 (A Combined Multiple Regression Trees Predictor for Screening Large Chemical Databases)

  • 임용빈;이소영;정종희
    • 응용통계연구
    • /
    • 제14권1호
    • /
    • pp.91-101
    • /
    • 2001
  • 다중나무예측치들이 한 개의 나무 예측치 보다 검증용 자료 오분류률을 줄이는데 있어서 더 정확하다 라는 것은 잘 알려져 있는 사실이다. 다중나무를 생성하는 두 가지 방법이 있다. 하나는 원래의 훈련용 자료를 재 추출하여 수정된 훈련용자료들을 만든 다음에 각각의 수정된 훈련용 자료에 근거하여 나무를 만드는 것이다. arcing 알고리즘이 효율적이라고 알려져있다. 다른 방법은 각각의 마디에서 최적 분리의 후보들 중에서 랜덤하게 하나를 선택하여 나무를 생성하는데에, 이 과정을 반복하면 원래의 훈련용 자료에 대해서 비교적 좋은 나무들을 생성하리라 기대되다. 우리는 arcing의 각 단계에서 후자의 다중회귀나무예측치들을 사용하는 결합다중회귀나무예측치를 제안하고, 효능 있는 화합물들을 찾기 위한 고속의 대량 선별 자료 분석의 예를 통해서 예측방법들의 효율성을 비교한다.

  • PDF

분류와 회귀나무분석에 관한 소고 (Note on classification and regression tree analysis)

  • 임용빈;오만숙
    • 품질경영학회지
    • /
    • 제30권1호
    • /
    • pp.152-161
    • /
    • 2002
  • The analysis of large data sets with hundreds of thousands observations and thousands of independent variables is a formidable computational task. A less parametric method, capable of identifying important independent variables and their interactions, is a tree structured approach to regression and classification. It gives a graphical and often illuminating way of looking at data in classification and regression problems. In this paper, we have reviewed and summarized tile methodology used to construct a tree, multiple trees and the sequential strategy for identifying active compounds in large chemical databases.

An Ensemble Cascading Extremely Randomized Trees Framework for Short-Term Traffic Flow Prediction

  • Zhang, Fan;Bai, Jing;Li, Xiaoyu;Pei, Changxing;Havyarimana, Vincent
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1975-1988
    • /
    • 2019
  • Short-term traffic flow prediction plays an important role in intelligent transportation systems (ITS) in areas such as transportation management, traffic control and guidance. For short-term traffic flow regression predictions, the main challenge stems from the non-stationary property of traffic flow data. In this paper, we design an ensemble cascading prediction framework based on extremely randomized trees (extra-trees) using a boosting technique called EET to predict the short-term traffic flow under non-stationary environments. Extra-trees is a tree-based ensemble method. It essentially consists of strongly randomizing both the attribute and cut-point choices while splitting a tree node. This mechanism reduces the variance of the model and is, therefore, more suitable for traffic flow regression prediction in non-stationary environments. Moreover, the extra-trees algorithm uses boosting ensemble technique averaging to improve the predictive accuracy and control overfitting. To the best of our knowledge, this is the first time that extra-trees have been used as fundamental building blocks in boosting committee machines. The proposed approach involves predicting 5 min in advance using real-time traffic flow data in the context of inherently considering temporal and spatial correlations. Experiments demonstrate that the proposed method achieves higher accuracy and lower variance and computational complexity when compared to the existing methods.

공간통계학적 방법에 의한 소나무 재선충 피해의 자연적 확산유형분석 (Natural Spread Pattern of Damaged Area by Pine Wilt Disease Using Geostatistical Analysis)

  • 손민호;이우균;이승호;조현국;이준학
    • 한국산림과학회지
    • /
    • 제95권3호
    • /
    • pp.240-249
    • /
    • 2006
  • 최근, 소나무재선충(Bursaphelenchus xylophilus)에 의한 소나무림의 피해에 대한 사회적 심각성이 크게 대두되고 있다. 소나무 재선충에 의한 산림피해는 피해지 내에서는 매개충인 솔수염하늘소의 자연적인 영역확장에 의해 확산되는 반면, 전국적으로는 감염목의 인위적 반출 및 이동에 의해 확산이 진행되고 있다. 본 연구에서는 부산 대변항의 재선충 피해지내에서 항공사진 및 현지조사에 의해 피해목의 공간적인 위치를 파악하였고, 공간통계학적인 방법을 통하여 피해목의 공간분포유형, 피해발생과 지형인자간의 관계를 분석하였다. 또한, 지형공간자료를 통계학적 Tree 모형에 적용한 CART(Classification and Regression Trees)모형을 이용하여 재선충 피해의 자연적인 확산 예측 지도를 작성하였다. 본 연구를 통해 공간통계학적인 분석과 CART모형이 소나무재선충 피해의 공간분포 및 자연적 확산유형을 파악하는데 유용한 도구로 활용될 수 있음을 확인할 수 있었다.

데이터마이닝기법상에서 적합된 예측모형의 평가 -4개분류예측모형의 오분류율 및 훈련시간 비교평가 중심으로 (Evaluations of predicted models fitted for data mining - comparisons of classification accuracy and training time for 4 algorithms)

  • 이상복
    • Journal of the Korean Data and Information Science Society
    • /
    • 제12권2호
    • /
    • pp.113-124
    • /
    • 2001
  • 의사결정나무모형 가운데 하나인 CHAID, 로지스틱 회귀모형, 이들을 이용한 각각의 베깅모형 등 4가지 예측분류모형에 대한 오분류율과 훈련시간을 표본크기별로 계산하고, 이들 모형에 대한 모의실험 비교를 통하여 주어진 알고리즘들의 효율성을 평가하였다. 베깅 의사결정나무모형은 오분류율은 낮았으나 상대적으로 훈련시간이 가장 길었다.

  • PDF

Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components

  • Bustillo, Andres;Lopez de Lacalle, Luis N.;Fernandez-Valdivielso, Asier;Santos, Pedro
    • Journal of Computational Design and Engineering
    • /
    • 제3권4호
    • /
    • pp.337-348
    • /
    • 2016
  • An experimental approach is presented for the measurement of wear that is common in the threading of cold-forged steel. In this work, the first objective is to measure wear on various types of roll taps manufactured to tapping holes in microalloyed HR45 steel. Different geometries and levels of wear are tested and measured. Taking their geometry as the critical factor, the types of forming tap with the least wear and the best performance are identified. Abrasive wear was observed on the forming lobes. A higher number of lobes in the chamber zone and around the nominal diameter meant a more uniform load distribution and a more gradual forming process. A second objective is to identify the most accurate data-mining technique for the prediction of form-tap wear. Different data-mining techniques are tested to select the most accurate one: from standard versions such as Multilayer Perceptrons, Support Vector Machines and Regression Trees to the most recent ones such as Rotation Forest ensembles and Iterated Bagging ensembles. The best results were obtained with ensembles of Rotation Forest with unpruned Regression Trees as base regressors that reduced the RMS error of the best-tested baseline technique for the lower length output by 33%, and Additive Regression with unpruned M5P as base regressors that reduced the RMS errors of the linear fit for the upper and total lengths by 25% and 39%, respectively. However, the lower length was statistically more difficult to model in Additive Regression than in Rotation Forest. Rotation Forest with unpruned Regression Trees as base regressors therefore appeared to be the most suitable regressor for the modeling of this industrial problem.