• Title/Summary/Keyword: Regression Study

Search Result 28,750, Processing Time 0.055 seconds

Injection mold Design Optimization using Regression Analysis (회귀분석을 이용한 사출금형 설계 최적화)

  • Ryu M.R.;Kim Y.H.;Lee S.J.;Lee K.H.;Park H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.657-660
    • /
    • 2005
  • It is net easy to predict the shrinkage rate of a plastic injection mold in its design process. The shrinkage rate should be considered as one of the important performances to produce the reliable products. The shrinkage rate can be determined by suing the CAE tools in the design produces. However, since the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. Therefore this study was carried out to presume for mutual relation of analysis condition to get the optimum average shrinkage by regression analysis. The results shown that coefficient of determination of regression equation has a fine reliability over 88.3% and regression equation of average shrinkage is made by regression analysis.

  • PDF

Analysis of Characteristics of All Solid-State Batteries Using Linear Regression Models

  • Kyo-Chan Lee;Sang-Hyun Lee
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.206-211
    • /
    • 2024
  • This study used a total of 205,565 datasets of 'voltage', 'current', '℃', and 'time(s)' to systematically analyze the properties and performance of solid electrolytes. As a method for characterizing solid electrolytes, a linear regression model, one of the machine learning models, is used to visualize the relationship between 'voltage' and 'current' and calculate the regression coefficient, mean squared error (MSE), and coefficient of determination (R^2). The regression coefficient between 'Voltage' and 'Current' in the results of the linear regression model is about 1.89, indicating that 'Voltage' has a positive effect on 'Current', and it is expected that the current will increase by about 1.89 times as the voltage increases. MSE found that the mean squared error between the model's predicted and actual values was about 0.3, with smaller values closer to the model's predictions to the actual values. The coefficient of determination (R^2) is about 0.25, which can be interpreted as explaining 25% of the data.

MARS Modeling for Ordinal Categorical Response Data: A Case Study

  • Kim, Ji-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.711-720
    • /
    • 2000
  • A case study of modeling ordinal categorical response data with the MARS method is done. The study is to analyze the effect of some personal characteristics and socioeconomic status on the teenage marijuana use. The MARS method gave a new insight into the data set.

  • PDF

Comparison of Genetic Parameter Estimates of Total Sperm Cells of Boars between Random Regression and Multiple Trait Animal Models

  • Oh, S.-H.;See, M.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.923-927
    • /
    • 2008
  • The objective of this study was to compare random regression model and multiple trait animal model estimates of the (co) variance of total sperm cells over the active lifetime of AI boars. Data were provided by Smithfield Premium Genetics (Rose Hill, NC). Total number of records and animals for the random regression model were 19,629 and 1,736, respectively. Data for multiple trait animal model analyses were edited to include only records produced at 9, 12, 15, 18, 21, 24, and 27 months of age. For the multiple trait method estimates of genetic and residual variance for total sperm cells were heterogeneous among age classifications. When comparing multiple trait method to random regression, heritability estimates were similar except for total sperm cells at 24 months of age. The multiple trait method also resulted in higher estimates of heritability of total sperm cells at every age when compared to random regression results. Random regression analysis provided more detail with regard to changes of variance components with age. Random regression methods are the most appropriate to analyze semen traits as they are longitudinal data measured over the lifetime of boars.

Optimized Neural Network Weights and Biases Using Particle Swarm Optimization Algorithm for Prediction Applications

  • Ahmadzadeh, Ezat;Lee, Jieun;Moon, Inkyu
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1406-1420
    • /
    • 2017
  • Artificial neural networks (ANNs) play an important role in the fields of function approximation, prediction, and classification. ANN performance is critically dependent on the input parameters, including the number of neurons in each layer, and the optimal values of weights and biases assigned to each neuron. In this study, we apply the particle swarm optimization method, a popular optimization algorithm for determining the optimal values of weights and biases for every neuron in different layers of the ANN. Several regression models, including general linear regression, Fourier regression, smoothing spline, and polynomial regression, are conducted to evaluate the proposed method's prediction power compared to multiple linear regression (MLR) methods. In addition, residual analysis is conducted to evaluate the optimized ANN accuracy for both training and test datasets. The experimental results demonstrate that the proposed method can effectively determine optimal values for neuron weights and biases, and high accuracy results are obtained for prediction applications. Evaluations of the proposed method reveal that it can be used for prediction and estimation purposes, with a high accuracy ratio, and the designed model provides a reliable technique for optimization. The simulation results show that the optimized ANN exhibits superior performance to MLR for prediction purposes.

Development of Regression Equation for Water Quantity Estimation in a Tidal River (감조하천에서의 저수위 유량산정 다중회귀식 개발)

  • Lee, Sang Jin;Ryoo, Kyong Sik;Lee, Bae Sung;Yoon, Jong Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.385-390
    • /
    • 2007
  • Reliable flow measurement for dry season is very important to set up the in-stream flow exactly and total maximum daily load control program in the basin. Especially, in the points which tidal current effects are dominant because reliability of the low measurement decrease. The reliable measuring methods are needed. In this study, we analysis the water surface elevation difference of water surface elevation. Quantity relationship to consider tidal currents in these regions. It is known that tidal current effects from Nakdong river barrage are dominant in Samrangjin measuring station. We developed multiple regression equation with water surface elevation, quantity, and difference of water surface elevation and compared these results water measured rating curve. All of these regression equation including linear regression equation and log regression equation fits better measured data them existing water surface elevation quantity line and Among three equations, the log regression equation is best to represent the measured the rating curve in Samrangjin point. The log regression equation is useful method to obtain the quantity in the regions which tidal currents are dominant.

Predict of Surface Roughness Using Multi-regression Analysisin Turning of Plastic Mold Steel (플라스틱 금형강의 선삭 가공시 중회귀분석을 이용한 표면거칠기 예측)

  • Bae, Myung-Il;Rhie, Yi-Seon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.87-92
    • /
    • 2013
  • In this study, we carried out the turning of plastic mold steel(STAVAX) with whisker reinforced ceramic tool(WA1) and analyzed ANOVA(Analysis of Variance) test. Multi-regression analysis was performed to find influential factors to surface roughness and to derive regression equation. Results are follows: From ANOVA test and confidence interval analysis of surface roughness, We found that influential factors to surface roughness was feed rate, cutting speed and depth of cut in order. From multi-regression analysis, we derived regression equation of STAVAX. it's coefficient of determination($R^2$) was 0.945 and It means that regression equation is significant. From experimental verification, we confirmed that surface roughness was predictable by regression equation. Compared with former research, we confirmed that increase of feed rate is the main cause of the growing of surface roughness and cutting force.

Comparison of machine learning techniques to predict compressive strength of concrete

  • Dutta, Susom;Samui, Pijush;Kim, Dookie
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.463-470
    • /
    • 2018
  • In the present study, soft computing i.e., machine learning techniques and regression models algorithms have earned much importance for the prediction of the various parameters in different fields of science and engineering. This paper depicts that how regression models can be implemented for the prediction of compressive strength of concrete. Three models are taken into consideration for this; they are Gaussian Process for Regression (GPR), Multi Adaptive Regression Spline (MARS) and Minimax Probability Machine Regression (MPMR). Contents of cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate and age in days have been taken as inputs and compressive strength as output for GPR, MARS and MPMR models. A comparatively large set of data including 1030 normalized previously published results which were obtained from experiments were utilized. Here, a comparison is made between the results obtained from all the above mentioned models and the model which provides the best fit is established. The experimental results manifest that proposed models are robust for determination of compressive strength of concrete.

Development of Statistical Model and Neural Network Model for Tensile Strength Estimation in Laser Material Processing of Aluminum Alloy (알루미늄 합금의 레이저 가공에서 인장 강도 예측을 위한 회귀 모델 및 신경망 모델의 개발)

  • Park, Young-Whan;Rhee, Se-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.93-101
    • /
    • 2007
  • Aluminum alloy which is one of the light materials has been tried to apply to light weight vehicle body. In order to do that, welding technology is very important. In case of the aluminum laser welding, the strength of welded part is reduced due to porosity, underfill, and magnesium loss. To overcome these problems, laser welding of aluminum with filler wire was suggested. In this study, experiment about laser welding of AA5182 aluminum alloy with AA5356 filler wire was performed according to process parameters such as laser power, welding speed and wire feed rate. The tensile strength was measured to find the weldability of laser welding with filler wire. The models to estimate tensile strength were suggested using three regression models and one neural network model. For regression models, one was the multiple linear regression model, another was the second order polynomial regression model, and the other was the multiple nonlinear regression model. Neural network model with 2 hidden layers which had 5 and 3 nodes respectively was investigated to find the most suitable model for the system. Estimation performance was evaluated for each model using the average error rate. Among the three regression models, the second order polynomial regression model had the best estimation performance. For all models, neural network model has the best estimation performance.

Development of Regression Models Resolving High-Dimensional Data and Multicollinearity Problem for Heavy Rain Damage Data (호우피해자료에서의 고차원 자료 및 다중공선성 문제를 해소한 회귀모형 개발)

  • Kim, Jeonghwan;Park, Jihyun;Choi, Changhyun;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.801-808
    • /
    • 2018
  • The learning of the linear regression model is stable on the assumption that the sample size is sufficiently larger than the number of explanatory variables and there is no serious multicollinearity between explanatory variables. In this study, we investigated the difficulty of model learning when the assumption was violated by analyzing a real heavy rain damage data and we proposed to use a principal component regression model or a ridge regression model after integrating data to overcome the difficulty. We evaluated the predictive performance of the proposed models by using the test data independent from the training data, and confirmed that the proposed methods showed better predictive performances than the linear regression model.