• Title/Summary/Keyword: Regions of Interest

Search Result 611, Processing Time 0.024 seconds

Content-Based Retrieval for Region of Interest Using Maximum Bin Color (최대 빈 색상 정보를 이용한 관심영역의 검색)

  • 주재일;이종설;조위덕;문영식
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.207-210
    • /
    • 2002
  • In this paper, content-based retrieval for region of interest(ROI) has been described, using maximum bin color. From a given query image, the object of interest is selected by a user. Using maximum bin color of the selected object, candidate regions are extracted from database images. The final regions of interest are determined by comparing the normalized histograms of the selected object and each candidate region.

  • PDF

Text Detection in Scene Images Based on Interest Points

  • Nguyen, Minh Hieu;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.528-537
    • /
    • 2015
  • Text in images is one of the most important cues for understanding a scene. In this paper, we propose a novel approach based on interest points to localize text in natural scene images. The main ideas of this approach are as follows: first we used interest point detection techniques, which extract the corner points of characters and center points of edge connected components, to select candidate regions. Second, these candidate regions were verified by using tensor voting, which is capable of extracting perceptual structures from noisy data. Finally, area, orientation, and aspect ratio were used to filter out non-text regions. The proposed method was tested on the ICDAR 2003 dataset and images of wine labels. The experiment results show the validity of this approach.

Classification of Cognitive States from fMRI data using Fisher Discriminant Ratio and Regions of Interest

  • Do, Luu Ngoc;Yang, Hyung Jeong
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.56-63
    • /
    • 2012
  • In recent decades, analyzing the activities of human brain achieved some accomplishments by using the functional Magnetic Resonance Imaging (fMRI) technique. fMRI data provide a sequence of three-dimensional images related to human brain's activity which can be used to detect instantaneous cognitive states by applying machine learning methods. In this paper, we propose a new approach for distinguishing human's cognitive states such as "observing a picture" versus "reading a sentence" and "reading an affirmative sentence" versus "reading a negative sentence". Since fMRI data are high dimensional (about 100,000 features in each sample), extremely sparse and noisy, feature selection is a very important step for increasing classification accuracy and reducing processing time. We used the Fisher Discriminant Ratio to select the most powerful discriminative features from some Regions of Interest (ROIs). The experimental results showed that our approach achieved the best performance compared to other feature extraction methods with the average accuracy approximately 95.83% for the first study and 99.5% for the second study.

Color Image Query Using Hierachical Search by Region of Interest with Color Indexing

  • Sombutkaew, Rattikorn;Chitsobhuk, Orachat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.810-813
    • /
    • 2004
  • Indexing and Retrieving images from large and varied collections using image content as a key is a challenging and important problem in computer vision application. In this paper, a color Content-based Image Retrieval (CBIR) system using hierarchical Region of Interest (ROI) query and indexing is presented. During indexing process, First, The ROIs on every image in the image database are extracted using a region-based image segmentation technique, The JSEG approach is selected to handle this problem in order to create color-texture regions. Then, Color features in form of histogram and correlogram are then extracted from each segmented regions. Finally, The features are stored in the database as the key to retrieve the relevant images. As in the retrieval system, users are allowed to select ROI directly over the sample or user's submission image and the query process then focuses on the content of the selected ROI in order to find those images containing similar regions from the database. The hierarchical region-of-interest query is performed to retrieve the similar images. Two-level search is exploited in this paper. In the first level, the most important regions, usually the large regions at the center of user's query, are used to retrieve images having similar regions using static search. This ensures that we can retrieve all the images having the most important regions. In the second level, all the remaining regions in user's query are used to search from all the retrieved images obtained from the first level. The experimental results using the indexing technique show good retrieval performance over a variety of image collections, also great reduction in the amount of searching time.

  • PDF

Extraction of a Central Object in a Color Image Based on Significant Colors (특이 칼라에 기반한 칼라 영상에서의 중심 객체 추출)

  • SungYoung Kim;Eunkyung Lim;MinHwan Kim
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.648-657
    • /
    • 2004
  • A method of extracting central objects in color images without any prior-knowledge is proposed in this paper, which uses basically information of significant color distribution. A central object in an image is defined as a set of regions that lie around center of the image and have significant color distribution against the other surround (or background) regions. Significant colors in an image are first defined as the colors that are distributed more densely around center of the image than near borders. Then core object regions (CORs) are selected as the regions a lot of pixels of which have the significant colors. Finally, the adjacent regions to the CORs are iteratively merged if they are similar to the CORs but not to the background regions in color distribution. The merging result is accepted as the central object that may include differently color-characterized regions and/or two or more objects of interest. Usefulness of the significant colors in extracting the central object was verified through experiments on several kinds of test images. We expect that central objects shall be used usefully in image retrieval applications.

  • PDF

A new multiple description selective coding scheme (새로운 멀티플 디스크립션 선택적 부호화 방식)

  • Lee, Jong-Bae
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • A new multiple description selective coding is proposed to overcome noisy channels. Our algorithm adopts an embedded coding scheme, in which subband coefficients are encoded one bit plane at a time using a non-adaptive arithmetic encoder. According to the importance ratio for each region, we code interest regions with more passes than background in order to reconstruct interest regions with higher quality. To overcome channel errors, we adopt multiple description scheme which adds controlled amounts of redundancy to the original data during the compression process. Proposed algorithm achieves better qualify compared with other algorithms especially in the circumstances where very low bit rate coding is required and some regions are more important than other regions.

Robust Road Detection using Adaptive Seed based Watershed Segmentation (적응적 Seed를 기초로한 분수계 분할을 이용한 차도영역 검출)

  • Park, Han-dong;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.687-690
    • /
    • 2015
  • Forward collision warning systems(FCWS) and lane change assist systems(LCAS) need regions of interest for detecting lanes and objects as road regions. Watershed segmentation is effective algorithm that classify the road. That algorithm is split results appear differently depending on Watershed line with local minimum in the early part of the seed. If not road regions or vehicles combined the road's seed, It segment road with the others. For compensate the that defect, It has to adaptive change by road environment. The method is that image segmentate the several of regions of interest. Then It is set in a straight line that is detected in regions of interest. If It was detected cars on seed, seed is adjusted the location. And If It wasn't include the line, seed is adjusted the length for final decision the seed. We can detect the road region using the final seed that selected according to the road environment.

  • PDF

Image Retrieval Method Based on IPDSH and SRIP

  • Zhang, Xu;Guo, Baolong;Yan, Yunyi;Sun, Wei;Yi, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1676-1689
    • /
    • 2014
  • At present, the Content-Based Image Retrieval (CBIR) system has become a hot research topic in the computer vision field. In the CBIR system, the accurate extractions of low-level features can reduce the gaps between high-level semantics and improve retrieval precision. This paper puts forward a new retrieval method aiming at the problems of high computational complexities and low precision of global feature extraction algorithms. The establishment of the new retrieval method is on the basis of the SIFT and Harris (APISH) algorithm, and the salient region of interest points (SRIP) algorithm to satisfy users' interests in the specific targets of images. In the first place, by using the IPDSH and SRIP algorithms, we tested stable interest points and found salient regions. The interest points in the salient region were named as salient interest points. Secondary, we extracted the pseudo-Zernike moments of the salient interest points' neighborhood as the feature vectors. Finally, we calculated the similarities between query and database images. Finally, We conducted this experiment based on the Caltech-101 database. By studying the experiment, the results have shown that this new retrieval method can decrease the interference of unstable interest points in the regions of non-interests and improve the ratios of accuracy and recall.

An Approach to Target Tracking Using Region-Based Similarity of the Image Segmented by Least-Eigenvalue (최소고유치로 분할된 영상의 영역기반 유사도를 이용한 목표추적)

  • Oh, Hong-Gyun;Sohn, Yong-Jun;Jang, Dong-Sik;Kim, Mun-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.327-332
    • /
    • 2002
  • The main problems of computational complexity in object tracking are definition of objects, segmentations and identifications in non-structured environments with erratic movements and collisions of objects. The object's information as a region that corresponds to objects without discriminating among objects are considered. This paper describes the algorithm that, automatically and efficiently, recognizes and keeps tracks of interest-regions selected by users in video or camera image sequences. The block-based feature matching method is used for the region tracking. This matching process considers only dominant feature points such as corners and curved-edges without requiring a pre-defined model of objects. Experimental results show that the proposed method provides above 96% precision for correct region matching and real-time process even when the objects undergo scaling and 3-dimen-sional movements In successive image sequences.

Optimal ROI Determination for Obtaining PPG Signals from a Camera on a Smartphone

  • Lee, Keonsoo;Nam, Yunyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1371-1376
    • /
    • 2018
  • Photoplethysmography (PPG) is a convenient method for monitoring a heart rhythm. In addition to specialized devices, smartphones can be used to obtain PPG signals. However, as smartphones are not intended for this purpose, optimization is required to efficiently obtain PPG signals. Determining the optimal region of interest (ROI) is one such optimization method. There are two significant advantages in employing an optimized ROI. One is that the computing load is decreased by reducing the image size used to extract the PPG signal. The other is that stronger and more reliable PPG signals are obtained by removing noisy regions. In this paper, we propose an optimal ROI determination method by recursively splitting regions to locate the region that produces the strongest PPG signal.