• Title/Summary/Keyword: Regional climate

Search Result 882, Processing Time 0.033 seconds

Impact of the Rice-Duck Farming System on Regional Agricultural Environment at Hongsung Area (오리농법에 의한 벼 재배가 지역 환경에 미치는 영향 평가)

  • Roh, Kee-An;Kim, Min-Kyeong;Ko, Byong-Gu;Kim, Gun-Yeob;Shim, Kyo-Moon;Jeong, Hyun-Cheol;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.57-61
    • /
    • 2009
  • To clarify the impact of the rice-duck farming system on the regional environment and the surrounding, a case study was carried out at Hongdong Reservoir valley of Hongdong-myeon and Janggok-myeon, Hongseong-gun, Chungcheongnam-do where the density of livestock grazing is the highest and rice cultivation with the rice-duck farming system is extensively practiced. The soil characteristics and water qualities at paddy fields were compared between two rice cultivation methods of rice-duck farming system and conventional farming system. The organic matters and available phosphate contents in soil of paddy fields where the rice-duck farming system was practiced were higher than those of paddy fields where conventional farming system was practiced. However, the available phosphate content was lower than the optimum for rice cultivation and the mean concentration of paddy soil in Korea. The surface water quality of the paddy field with the rice-duck farming system was practiced had higher EC (137 %), $COD_{Cr}$ (220 %), T-N (172 %), and T-P (226 %) contents than that with the conventional farming system was practiced. Especially, $COD_{Cr}$ and T-P were more than 2 times higher, which tells that the possibility of water pollution by drainage water of paddy field is higher in the paddy fields with the rice-duck farming system practiced than in those with the conventional farming practiced. The higher contents of T-P and $COD_{Cr}$ in surface water at the paddy field of rice-duck farming system practiced were directly caused by soil particles in the muddy water. Consequently, it is necessary to thoroughly manage the irrigation and drainage system of rice-duck farming system practiced to prevent outflow of surface water from paddy and pollution of surrounding water system.

Utility of Climate Model Information For Water Resources Management in Korea

  • Jeong, Chang-Sam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.37-45
    • /
    • 2008
  • It is expected that conditions of water resources will be changed in Korea in accordance with world wide climate change. In order to deal with this problem and find a way of minimizing the effect of future climate change, the usefulness of climate model simulation information is examined in this study. The objective of this study is to assess the applicability of GCM (General Circulation Model) information for Korean water resources management through uncertainty analysis. The methods are based on probabilistic measures of the effectiveness of GCM simulations of an indicator variable for discriminating high versus low regional observations of a target variable. The formulation uses the significance probability of the Kolmogorov-Smirnov test for detecting differences between two variables. An estimator that accounts for climate model simulation and spatial association between the GCM data and observed data is used. Atmospheric general circulation model (AGCM) simulations done by ECMWF (European Centre for Medium-Range Weather Forecasts) with a resolution of $2^{\circ}{\times}2^{\circ}$, and METRI (Meteorological Research Institute, Korea) with resolutions of $2^{\circ}{\times}2^{\circ}$ and $4^{\circ}{\times}5^{\circ}$, were used for indicator variables, while observed mean areal precipitation (MAP) data, discharge data and mean areal temperature data on the seven major river basins in Korea were used for target variables. The results show that GCM simulations are useful in discriminating the high from the low of the observed precipitation, discharge, and temperature values. Temperature especially can be useful regardless of model and season.

Forecasting Brown Planthopper Infestation in Korea using Statistical Models based on Climatic tele-connections (기후 원격상관 기반 통계모형을 활용한 국내 벼멸구 발생 예측)

  • Kim, Kwang-Hyung;Cho, Jeapil;Lee, Yong-Hwan
    • Korean journal of applied entomology
    • /
    • v.55 no.2
    • /
    • pp.139-148
    • /
    • 2016
  • A seasonal outlook for crop insect pests is most valuable when it provides accurate information for timely management decisions. In this study, we investigated probable tele-connections between climatic phenomena and pest infestations in Korea using a statistical method. A rice insect pest, brown planthopper (BPH), was selected because of its migration characteristics, which fits well with the concept of our statistical modelling - utilizing a long-term, multi-regional influence of selected climatic phenomena to predict a dominant biological event at certain time and place. Variables of the seasonal climate forecast from 10 climate models were used as a predictor, and annual infestation area for BPH as a predictand in the statistical analyses. The Moving Window Regression model showed high correlation between the national infestation trends of BPH in South Korea and selected tempo-spatial climatic variables along with its sequential migration path. Overall, the statistical models developed in this study showed a promising predictability for BPH infestation in Korea, although the dynamical relationships between the infestation and selected climatic phenomena need to be further elucidated.

Distribution Characteristics of Water Scavenger Beetles (Hydrophilidae) in Korean Paddy Field (논 서식 물땡땡이과의 분포 특성)

  • Han, Min-Su;Bang, Hea-Son;Kim, Myung-Hyun;Kang, Kee-Kyung;Jung, Myung-Pyo;Lee, Deog-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.427-433
    • /
    • 2010
  • Aquatic invertebrates are the major important fauna to sustain the paddy ecosystem as predators of the lower trophic level and prey for birds in food-web dynamics as well. The nationwide distribution of scavenger beetles (Hydrophilidae) that is the top predator in an aquatic insect in the paddy field was investigated. A total of 15 scavenger beetles were recognized. Enochrus simulans (98.6%) and Laccobius bedeli (87.7%) showed a high frequency of occurrence on a nationwide scale. The majority of scavenger beetles were higher frequency of occurrence in mountainous regions(33.7%) than in open field regions(5.0%). On the other hand, E. uniformis, Coelostoma stultum and Berosus japonicus showed a low occurrence frequency. Hydrochara affinis, Sternolophus rufipes, Amphiops mater, B. elongatulus, B. signaticollis punctipennis, B. lewisius and H. libera showed regional specific distribution aspect. Therefore, these species can be used as biological index to research the biotic changes in paddy ecology according to an agro-environmental changes including climatic change in the future.

A study on the variation of design flood due to climate change in the ungauged urban catchment (기후변화에 따른 미계측 도시유역의 확률홍수량 변화에 관한 연구)

  • Hwang, Jeongyoon;Ahn, Jeonghwan;Jeong, Changsam;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.395-404
    • /
    • 2018
  • This research evaluated the change in rainfall quantile during S1, S2, and S3 by using Representative Concentration Pathways (RCP) 4.5 climate scenario HadGEM3-RA Regional Climate Model (RCM) produced by downscaling and bias correlation compared to the past standard observation data S0. Also, the maximum flood peak volume and flood area were calculated by using the urban runoff model and the impact of climate change was analyzed in each period. For this purpose, Gumbel distribution was used as an appropriate model based on the method of maximum likelihood. As a result, in the case of the 10 year-frequency which is the design of most urban drainage facilities, the rainfall quantile is in increased about 10% if we assume 50 years from now with the $3^{rd}$ quarter value and about 20% if we assume 70 years from now. This result implies that the installed urban drainage facility based on the currently set design flood volume cannot be met the design criteria in the future. Therefore, it is necessary to reflect future climate conditions to current urban drainage facilities.

Development and Application of a Methodologyfor Climate Change Vulnerability Assessment-Sea Level Rise Impact ona Coastal City (기후변화 취약성 평가 방법론의 개발 및 적용 해수면 상승을 중심으로)

  • Yoo, Ga-Young;Park, Sung-Woo;Chung, Dong-Ki;Kang, Ho-Jeong;Hwang, Jin-Hwan
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.185-205
    • /
    • 2010
  • Climate change vulnerability assessment based on local conditions is a prerequisite for establishment of climate change adaptation policies. While some studies have developed a methodology for vulnerability assessment at the national level using statistical data, few attempts, whether domestic or overseas, have been made to develop methods for local vulnerability assessments that are easily applicable to a single city. Accordingly, the objective of this study was to develop a conceptual framework for climate change vulnerability, and then develop a general methodology for assessment at the regional level applied to a single coastal city, Mokpo, in Jeolla province, Korea. We followed the conceptual framework of climate change vulnerability proposed by the IPCC (1996) which consists of "climate exposure," "systemic sensitivity," and "systemic adaptive capacity." "Climate exposure" was designated as sea level rises of 1, 2, 3, 4, and 5 meter(s), allowing for a simple scenario for sea level rises. Should more complex forecasts of sea level rises be required later, the methodology developed herein can be easily scaled and transferred to other projects. Mokpo was chosen as a seaside city on the southwest coast of Korea, where all cities have experienced rising sea levels. Mokpo has experienced the largest sea level increases of all, and is a region where abnormal high tide events have become a significant threat; especially subsequent to the construction of an estuary dam and breakwaters. Sensitivity to sea level rises was measured by the percentage of flooded area for each administrative region within Mokpo evaluated via simulations using GIS techniques. Population density, particularly that of senior citizens, was also factored in. Adaptive capacity was considered from both the "hardware" and "software" aspects. "Hardware" adaptive capacity was incorporated by considering the presence (or lack thereof) of breakwaters and seawalls, as well as their height. "Software" adaptive capacity was measured using a survey method. The survey questionnaire included economic status, awareness of climate change impact and adaptation, governance, and policy, and was distributed to 75 governmental officials working for Mokpo. Vulnerability to sea level rises was assessed by subtracting adaptive capacity from the sensitivity index. Application of the methodology to Mokpo indicated vulnerability was high for seven out of 20 administrative districts. The results of our methodology provides significant policy implications for the development of climate change adaptation policy as follows: 1) regions with high priority for climate change adaptation measures can be selected through a correlation diagram between vulnerabilities and records of previous flood damage, and 2) after review of existing short, mid, and long-term plans or projects in high priority areas, appropriate adaptation measures can be taken as per this study. Future studies should focus on expanding analysis of climate change exposure from sea level rises to other adverse climate related events, including heat waves, torrential rain, and drought etc.

  • PDF

A Study on the Thermal Sensation Vote of the Traditional Housing in Summer (전통주택의 하절기 실내 온열감 평가에 관한 연구)

  • Kang, Sang-Woo;Jeon, Ji-Hyeon;Shin, Yong-Gyu;Min, Byeong-Cheol;Kook, Chan
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2006.11a
    • /
    • pp.488-491
    • /
    • 2006
  • There is a principle of Korean Traditional Housing to be adapted for the nature using adaptable shapes to regional climate and easily available materials from the region then these environmentally friendly characteristics keep indoor environment from climate changes. These environmentally friendly characteristics to control indoor environment are very available for contemporary housing in that current issues, housing amenity and wellbeing, have basic goals same with what Korean Traditional Housing has. Therefore, this study begins to suggest fundamental data on indoor thermal environment control elements of Korean Traditional Housing to adapt those into contemporary housing through measurement of indoor thermal environment elements and evaluation on thermal sensation vote for Korean traditional housing. There was 24 hours measurement for indoor and outdoor thermal environmental elements to figure out competence to control indoor thermal environment of Korean Traditional Housing in summer. And subjective tests with 11 subjects was held in the morning, afternoon and night at intervals of 3${\sim}$4 hours to evaluate feeling and amenity for temperature and humidity of users.

  • PDF

Investigation of school building microclimate using advanced energy equipment: Case study

  • Alwetaishi, Mamdooh;Alzaed, Ali;Sonetti, Giulia;Shrahily, Raid;Jalil, Latif
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.10-20
    • /
    • 2018
  • Buildings are responsible of major energy consumption globally. In addition, they are linked to thermal comfort. The need to provide comfort becomes more crucial in schools as they are the place where students learn, and develop their skills. This research aims to investigate the energy responsiveness of new and traditional school building design, where major variation in form, amount of external walls and glazing are different. The research focused on indoor microclimate condition of selected schools in the city of Jeddah where the climate is hot and humid using advanced tools for monitoring. The research uses advanced energy equipment to measure several aspects such as floor temperature, roof temperature, globe temperature and other factors which can lead to predictable thermal comfort of users. The findings suggest that a larger area of glazing shielded from sunlight has a greater influence on both indoor condition and general thermal sensation. The finding also suggests that the glazing ratio is a major contributor on indoor thermal pattern which can result in an increase in temperature profile between from $7-10^{\circ}C$. The findings of this research can assist in the improvement in the design of the prototype school building in hot and humid climate.

Assessment of Climate Change Impact on Flow Regime and Aquatic Ecosystems Using the Indicators of Hydrologic Alteration(IHA) in the Han River basin, Korea (IHA를 이용한 기후변화가 유역의 유황과 수생태계에 미치는 영향 평가)

  • Kim, Byung-Sik;Kim, Bo-Kyung;Kwon, Hyun-Han;Seoh, Byung-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.134-138
    • /
    • 2009
  • 물 순환과정의 핵심요소로 설명되는 유출량은 용수 공급과 가뭄재해에 대한 이수, 홍수 대비 및 관리는 물론, 하천생태계 유지를 위한 환경에 영향을 미치게 된다. 특히, 유출량의 규모(quantity)와 시간(timing)은 용수공급, 수질과 하천 시스템의 생태학적 교류에 중요한 요소로(Poff 등, 1997) 하천 유황의 5가지 요소(규모, 빈도, 지속시간, 시간과 변화율)는 수중 생태계에 직 간접적인 영향을 미친다(Karr, 1991; Poff 등, 1997). 최근 기후변화 현실화로 강우 발생 시기와 패턴이 변화하면서 유역에 따라 유황이 변화하고 있는 실정이다. 이에 본 논문은 기후변화가 향후 하천 유황과 수생태계에 미치는 영향을 분석하기 위하여 한강 유역을 대상유역으로 선정하고 기상청(Korea Meterological Administration, KMA)에서 제공하는 A2 기반의 고해상도 RCM 모형($27km{\times}27km$)으로부터 일(daily)단위의 기후변화시나리오를 작성하였다. 그리고 준분포형 모형인 SLURP 모형으로부터 유출 변화를 모의한 후 수문변화지표(indicator of Hydrologic Alteration, IHA)를 이용하여 기후변화에 따른 하천 유황과 수생태계에 미치는 영향을 정량화하였다.

  • PDF

Holocene Environmental Change and Human Impact in Hoya Rincon de Parangueo, Guanajuato, Mexico

  • Park, Jung-Jae
    • The Korean Journal of Ecology
    • /
    • v.28 no.5
    • /
    • pp.245-254
    • /
    • 2005
  • This paper presents a paleoenvironmental study on Hoya Rincon do Parangueo, a maar lake in Valle de Santiago in Central Mexican Bajio. Maar lake sediments have been widely used for high-resolution reconstruction of paleoenvironment. Many different paleoenvironmental proxy data such as stable isotopes, pollen, sediment chemistry, and dung fungus spore were produced in this study. The pine-oak ratio, stable isotopes, and sediment chemistry help to reveal paleoenviromental changes throughout the whole period covered by sediment materials from this study site. The evidence I found indicates that during ca. 9,500 $\sim$ ca. 8,300 cal yr B.P. there was dry climate; during ca. 8,300 $\sim$ ca. 6,300 cal yr B.P. it was wetter; during ca. 6,300 $\sim$ ca. 4,000 cal yr B.P. drier and cooler; during ca. 4,000 $\sim$ ca. 1,100 cal yr B.P. milder and wetter. The presence of Chupicuaro culture between ca. 2,500 $\sim$ 1,100 cal yr B.P. is implied by the high frequencies of Amaranthaceae and Zea mars. It seems that man left this lake around 1,100 cal yr B.P. due to a dry climate after 1,300 cal yr B.P. Spanish arrival around 400 cal yr B.P. is implied by the fact that fe3 mars reappears and Sporormiella spp. become significant around 120 cm, whereas Poaceae drops sharply.