• Title/Summary/Keyword: Regional climate

Search Result 875, Processing Time 0.03 seconds

Development of Hierarchical Bayesian Spatial Regional Frequency Analysis Model Considering Geographical Characteristics (지형특성을 활용한 계층적 Bayesian Spatial 지역빈도해석)

  • Kim, Jin-Young;Kwon, Hyun-Han;Lim, Jeong-Yeul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.469-482
    • /
    • 2014
  • This study developed a Bayesian spatial regional frequency analysis, which aimed to analyze spatial patterns of design rainfall by incorporating geographical information (e.g. latitude, longitude and altitude) and climate characteristics (e.g. annual maximum series) within a Bayesian framework. There are disadvantages to considering geographical characteristics and to increasing uncertainties associated with areal rainfall estimation on the existing regional frequency analysis. In this sense, this study estimated the parameters of Gumbel distribution which is a function of geographical and climate characteristics, and the estimated parameters were spatially interpolated to derive design rainfall over the entire Han-river watershed. The proposed Bayesian spatial regional frequency analysis model showed similar results compared to L-moment based regional frequency analysis, and even better performance in terms of quantifying uncertainty of design rainfall and considering geographical information as a predictor.

Climate Change and Regional Land Use Planning : The Formulation of California Senate Bill No. 375 (기후변화와 광역토지사용계획: 캘리포니아의 Senate Bill No. 375의 사례)

  • Choi, Hyun-Sun;Choi, Simon
    • Journal of Environmental Policy
    • /
    • v.9 no.1
    • /
    • pp.3-29
    • /
    • 2010
  • This paper explores how effectively the newly introduced planning process - California Senate Bill No. 375 will achieve the regional GHG emissions target under the California policy and planning framework and how well incentive based environmental policy might perform. The new legislation creates a future growth scenario to reduce greenhouse gas (GHG) emissions with incentives as means of implementation of AB 32 - the Global Warming Solution Act of 2006 and includes five important policy and planning aspects: 1) the role of sustainable communities strategies (SCS) as one of the key elements in their regional transportation plans; 2) planning for transportation and housing; 3) specified incentives for the implementation of SCS; 4) the regional planning approach toward reducing GHG emissions; and the role of the California Air Resources Board to establish the regional GHG emissions target. This has significant implications for regional and environmental planning with incentives - resources allocation and approval process.

  • PDF

Analysis of Regional Implementation Conditions and Industrial Strategies for Carbon Neutrality in China (중국 탄소중립 지역별 이행여건 및 산업전략 분석)

  • Yu-jeong Jeon;Su-han Kim
    • Analyses & Alternatives
    • /
    • v.7 no.2
    • /
    • pp.179-207
    • /
    • 2023
  • Carbon neutrality, the international community's practical challenge in response to climate change, is becoming a key industrial strategy for the future development of nations. Despite concerns that China, as an economic powerhouse in the G2, may face challenges leading global climate change efforts due to its high-carbon-emitting industrial structure, it is leveraging carbon neutrality to enhance its industrial competitiveness. The Chinese government has formulated national policies for achieving carbon neutrality and detailed sector-specific plans to implement them. In particular, it aims to leverage carbon neutrality industrial strategies as a lever for adjusting the domestic industrial structure and fostering new industries, at the same time responding to international climate norms and external pressures. However, the effectiveness of carbon-neutral industrial strategies is expected to vary based on regional conditions such as economic and industrial levels. This article analyzes the regional conditions for implementing carbon neutrality in China, as well as the contents and characteristics of major industrial policies. Due to differing levels of economic development and industrial structures, significant variations in carbon emissions, size, emission sources, and efficiency are inevitable across regions. These disparities introduce diverse initial conditions and endogenous factors in pursuing carbon-neutral goals, limiting the direction and implementation of carbon-neutral industrial strategies favoring certain regions. In particular, the extent of policy autonomy granted to local governments regarding carbon neutrality implementation will influence the regional dynamics of central-local environmental governance. Consequently, it is crucial to emphasize regional monitoring alongside comprehensive national research to accurately navigate the path towards carbon neutrality in China. In summary, the article underscores the importance of understanding regional variations in economic development, industrial structure, and policy autonomy for successful carbon neutrality implementation in China. It highlights the need for regional monitoring and comprehensive national research to determine a more precise direction for achieving carbon neutrality.

Trends in the effects of climate change on terrestrial ecosystems in the Republic of Korea

  • Choi, Sei-Woong;Kong, Woo-Seok;Hwang, Ga-Young;Koo, Kyung Ah
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.117-129
    • /
    • 2021
  • In this review, we aimed to synthesize the current knowledge on the observed and projected effects of climate change on the ecosystems of Korea (i.e., the Republic of Korea (ROK) or South Korea), as well as the main causes of vulnerability and options for adaptation in these ecosystems based on a range of ecological and biogeographical data. To this end, we compiled a set of peer-reviewed papers published since 2014. We found that publication of climate-related studies on plants has decreased in the field of plant phenology and physiology, whereas such publication has rapidly increased in plant and animal community ecology, reflecting the range shifts and abundance change that are occurring under climate change. Plant phenology studies showed that climate change has increased growing seasons by advancing the timing of flowering and budburst while delaying the timing of leafing out. Community ecology studies indicated that the future ranges of cold-adapted plants and animals could shrink or shift toward northern and high-elevation areas, whereas the ranges of warm-adapted organisms could expand and/or shift toward the areas that the aforementioned cold-adapted biota previously occupied. This review provides useful information and new insights that will improve understanding of climate change effects on the ecosystems of Korea. Moreover, it will serve as a reference for policy-makers seeking to establish future sectoral adaptation options for protection against climate change.

Studies on Changes and Future Projections of Subtropical Climate Zones and Extreme Temperature Events over South Korea Using High Resolution Climate Change Scenario Based on PRIDE Model (남한 상세 기후변화 시나리오를 이용한 아열대 기후대 및 극한기온사상의 변화에 대한 연구)

  • Park, Chang Yong;Choi, Young Eun;Kwon, Young A;Kwon, Jae Il;Lee, Han Su
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.4
    • /
    • pp.600-614
    • /
    • 2013
  • This study aims to examine spatially-detailed changes and projection of subtropical climate zones based on the modified K$\ddot{o}$ppen-Trewartha's climate classification and extreme temperature indices using $1km{\times}1km$ high resolution RCP 4.5 and RCP 8.5 climate change scenarios based on PRIDE model over the Republic of Korea. Subtropical climate zones currently located along the southern coastal region. Future subtropical climate zones would be pushed northwards expanding to the western and the eastern coastal regions as well as some metropolitan areas. For both scenarios, the frequency of cold-related extreme temperatures projects to be reduced while the frequency of hot-related ones projects to be increased. Especially, hot days with $33^{\circ}C$ or higher temperature projects to occur more than 30 days over the most of regions except for some mountain areas with high altitudes during the period of 2070~2100. This study might provide essential information to make climate change adaptation processes be enhanced.

  • PDF

Measure Improvement on Vulnerable Area based on Climate Change Impact on Agriculture Infrastructure (기후변화에 따른 농업생산기반시설 영향분석을 통한 정책추진 방안 연구)

  • Jeong, Kyung-Hun;Song, Suk-Ho;Jung, Hyoung-Mo;Oh, Seung-Heon;Kim, Soo-Jin;Lim, Se-Yun;Joo, Dong-Hyuk;Hwang, Syewoon;Jang, Min-Won;Bae, Seung-Jong;Yoo, Seung-Hwan
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.4
    • /
    • pp.81-91
    • /
    • 2020
  • This study was conducted to analyse climate change impact on agriculture infrastructure and propose improved measures on vulnerable areas. Recently, Climate change has resulted in damaging effects on agricultural fields through increases in drought intensity and flood risk. It is expected that this impact will increase over time. This study shows that Gyeong-gi and Chung-nam provinces are affected by drought and Gyeong-buk and Gyeong-nam provinces are affected by heavy rain. However, there are also regional variations within each province. Agricultural infrastructure affected by drought may also be affected by heavy rain. Increased damages on the infrastructure due to increased extreme weather events require preventive measures especially in vulnerable areas. In order to minimize the damage by climate change, we need to introduce a reform in the system which selects project region by analysing climate change impacts. Furthermore, impact assessment of climate change from projects such as 'water supply diversification', 'flooded farmland improvement', and 'irrigation facility reinforcement' also need to be adopted to improve the measures. The results of this study are expected to provide a foundation for establishing measures on coping with climate change in the agricultural sector.

Future Extreme Temperature and Precipitation Mechanisms over the Korean Peninsula Using a Regional Climate Model Simulation

  • Lee, Hyomee;Moon, Byung-Kwon;Wie, Jieun
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.327-341
    • /
    • 2018
  • Extreme temperatures and precipitations are expected to be more frequently occurring due to the ongoing global warming over the Korean Peninsula. However, few studies have analyzed the synoptic weather patterns associated with extreme events in a warming world. Here, the atmospheric patterns related to future extreme events are first analyzed using the HadGEM3-RA regional climate model. Simulations showed that the variability of temperature and precipitation will increase in the future (2051-2100) compared to the present (1981-2005), accompanying the more frequent occurrence of extreme events. Warm advection from East China and lower latitudes, a stagnant anticyclone, and local foehn wind are responsible for the extreme temperature (daily T>$38^{\circ}C$) episodes in Korea. The extreme precipitation cases (>$500mm\;day^{-1}$) were mainly caused by mid-latitude cyclones approaching the Korean Peninsula, along with the enhanced Changma front by supplying water vapor into the East China Sea. These future synoptic-scale features are similar to those of present extreme events. Therefore, our results suggest that, in order to accurately understand future extreme events, we should consider not only the effects of anthropogenic greenhouse gases or aerosol increases, but also small-scale topographic conditions and the internal variations of climate systems.

Revision of Agricultural Drainage Design Standards (농업생산기반정비사업 계획설계기준 배수편 개정)

  • Kim, Kyoung Chan;Kim, Younghwa;Song, Jaedo;Chung, Sangok
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.32-44
    • /
    • 2014
  • In Korea, global warming caused by the climate changes impacted on weather system with increase in frequency and intensity of precipitation, and the rainfall pattern changes significantly by regional groups. Furthermore, it is expected that the regional and annual fluctuation ranges of the rainfall in the future would be more severe. Nowadays, agricultural drainage system designed by the existing standard of 20-year return period and 2 days of fixation time cannot deal with the increment rainfall such as localized heavy rain and local torrential rainfalls. Therefore, it is required to reinforce the standard of the drainage system in order to reduce the agricultural flood damage brought by unusual weather. In addition, it is needed to improve the standard of agricultural drainage design in order to cultivate farm products in paddy fields as facility vegetable cultivation and up-land field crop have been damaged by the moisture injury and flooding. In order to prepare for the changes of rainfall pattern due to climate changes and improve the agricultural drainage design standards by the increase of cultivating farm products, the purpose of this study is to examine the impact of climate changes, the changes of relative design standard, and the analytic situation of agricultural flood damages, to consider the drainage design standard revision, and finally to prepare for enhanced agricultural drainage design standards.

  • PDF

Simulation of anomalous Indian Summer Monsoon of 2002 with a Regional Climate Model

  • Singh, G.P.;Oh, Jai-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The Indian summer monsoon behaved in an abnormal way in 2002 and as a result there was a large deficiency in precipitation (especially in July) over a large part of the Indian subcontinent. For the study of deficient monsoon of 2002, a recent version of the NCAR regional climate model (RegCM3) has been used to examine the important features of summer monsoon circulations and precipitation during 2002. The main characteristics of wind fields at lower level (850 hPa) and upper level (200 hPa) and precipitation simulated with the RegCM3 over the Indian subcontinent are studied using different cumulus parameterization schemes namely, mass flux schemes, a simplified Kuo-type scheme and Emanuel (EMU) scheme. The monsoon circulation features simulated by RegCM3 are compared with the NCEP/NCAR reanalysis and simulated precipitation is validated against observation from the Global Precipitation Climatology Centre (GPCC). Validation of the wind fields at lower and upper levels shows that the use of Arakawa and Schubert (AS) closure in Grell convection scheme, a Kuo type and Emanuel schemes produces results close to the NCEP/NCAR reanalysis. Similarly, precipitation simulated with RegCM3 over different homogeneous zones of India with the AS closure in Grell is more close to the corresponding observed monthly and seasonal values. RegcM3 simulation also captured the spatial distribution of deficient rainfall in 2002.

  • PDF

Production of Fine-resolution Agrometeorological Data Using Climate Model

  • Ahn, Joong-Bae;Shim, Kyo-Moon;Lee, Deog-Bae;Kang, Su-Chul;Hur, Jina
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2011.11a
    • /
    • pp.20-27
    • /
    • 2011
  • A system for fine-resolution long-range weather forecast is introduced in this study. The system is basically consisted of a global-scale coupled general circulation model (CGCM) and Weather Research and Forecast (WRF) regional model. The system makes use of a data assimilation method in order to reduce the initial shock or drift that occurs at the beginning of coupling due to imbalance between model dynamics and observed initial condition. The long-range predictions are produced in the system based on a non-linear ensemble method. At the same time, the model bias are eliminated by estimating the difference between hindcast model climate and observation. In this research, the predictability of the forecast system is studied, and it is illustrated that the system can be effectively used for the high resolution long-term weather prediction. Also, using the system, fine-resolution climatological data has been produced with high degree of accuracy. It is proved that the production of agrometeorological variables that are not intensively observed are also possible.

  • PDF