• Title/Summary/Keyword: Regional Resources

Search Result 1,955, Processing Time 0.036 seconds

Multi-Regional Resources Management Practice using Water-Energy-Food Nexus Simulation Model

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.163-163
    • /
    • 2019
  • The rapidly growing global population increases the awareness of water, energy, and food security worldwide. The concept of Water, Energy, and Food nexus (hereafter, WEF nexus) has been widely introduced as a new resources management concept that integrate the water, energy, and food in a single management framework. Recently, WEF nexus analyzes not only the interconnections among the resources, but also considers the external factors (such as environment, climate change, policy, finance, etc) to enhance the resources sustainability by proper understanding of their relations. A nation-level resources management is quite complex task since multiple regions (e.g., watersheds, cities, and counties) with different characteristics are spatially interconnected and transfer the resources each other. This study proposes a multiple region WEF nexus simulation and transfer model. The model is equipped with three simulation modules, such as local nexus simulation module, regional resources transfer module, and optimal investment planning module. The model intends to determine an optimal capital investment plan (CIP), such as build-up of power plants, water/waste water treatment plants, farmland development and to determine W-E-F import/export decisions among areas. The objective is to maximize overall resources sustainability while minimize financial cost. For demonstration, the proposed model is applied to a semi-hypothetical study area with three different characterized cities. It is expected the model can be used as a decision support tool for a long-term resources management planning process.

  • PDF

Development of Hierarchical Bayesian Spatial Regional Frequency Analysis Model Considering Geographical Characteristics (지형특성을 활용한 계층적 Bayesian Spatial 지역빈도해석)

  • Kim, Jin-Young;Kwon, Hyun-Han;Lim, Jeong-Yeul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.469-482
    • /
    • 2014
  • This study developed a Bayesian spatial regional frequency analysis, which aimed to analyze spatial patterns of design rainfall by incorporating geographical information (e.g. latitude, longitude and altitude) and climate characteristics (e.g. annual maximum series) within a Bayesian framework. There are disadvantages to considering geographical characteristics and to increasing uncertainties associated with areal rainfall estimation on the existing regional frequency analysis. In this sense, this study estimated the parameters of Gumbel distribution which is a function of geographical and climate characteristics, and the estimated parameters were spatially interpolated to derive design rainfall over the entire Han-river watershed. The proposed Bayesian spatial regional frequency analysis model showed similar results compared to L-moment based regional frequency analysis, and even better performance in terms of quantifying uncertainty of design rainfall and considering geographical information as a predictor.