본 논문은 인 메모리 기반의 분산처리 시스템인 Spark를 이용하여 공간 웹 객체 검색 시스템을 구현한 논문이다. 소셜 네트워크의 발전은 방대한 양의 공간 웹 객체를 생성하게 되었고, 기존의 공간 웹 객체 검색 시스템을 이용한 데이터 검색이나 분석은 힘들어졌다. 최근에 분산처리 시스템의 발전은 대용량의 데이터를 빠르게 분석하고 검색하는 기능을 지원해준다. 따라서 대용량의 공간 웹 객체를 검색하기 위해서는 분산 처리 시스템을 이용한 방법이 필요하다. 분산 처리 시스템에서는 데이터가 블록 단위로 처리되고, 이러한 블록 하나를 Spark에서는 데이터를 RDD로 변환하여 처리한다. 본 논문에서는 위의 방법에 착안하여 전체 공간 영역을 기반으로 서로 겹치지 않는 공간영역으로 분할을 하고, 분할된 영역 하나당 하나의 파티션을 할당하고 각각의 파티션은 자신이 포함하고 있는 데이터에 대한 공간 웹 객체 인덱스로 구성하는 시스템을 제안한다. 즉, 본 논문에서는 공간 분할을 이용하여 분산처리 시스템을 효율적으로 이용하고, 분할된 공간에 대한 검색의 효율성을 높일 수 있는 시스템을 제안한다. 또한, 데이터의 검색을 위하여 공간 정보와 단어 정보를 같이 사용하여 인덱스를 구축하는 QP-tree를 적용한 방법과 공간 정보만을 이용하여 인덱스를 구축하는 R-tree를 적용한 방법과의 비교를 통하여 제안한 시스템이 공간 웹 객체의 검색에 더 우수한 성능을 보여주는 것을 확인할 수 있다.
본 논문은 outdoor images의 촬영 위치와 방향 정보를 이용한 영상데이터베이스 구축과 효율적인 검색방법을 제안한다. 또한 위치와 방향 정보의 추출을 자동화 하기위해 디지털카메라에 확장형 GPS모듈(위치 및 방향 계산 기능포함)을 내장하고 EXIF의 GPS IFD tags를 활용할 것을 제안한다. 본 연구에서는 이 정보들을 이용함으로써 사용자가 원하는 타겟 즉, 지형 혹은 지물 등을 포함한 영상을 신속하고 정확하게 검색할 수 있게 된다. 기존의 위치기반 영상검색방법은 특정 거리의 반경 영역인 ROI(Region Of Interest)내에 존재하는 모든 영상을 대상으로 찾기 때문에 불필요한 영상이 포함되었으나, 제안한 방법은 ROI로 지정한 영역의 모든 영상의 검색뿐만 아니라 타겟을 향해 촬영한 특정방향 DOI(Direction Of Interest)내 영상들만을 선택적으로도 검색할 수 있는데 이 경우는 검색의 정확도를 100% 가까이 극대화시킬 수 있다. 이러한 응용을 영상검색 시스템에 적용한다면 위치와 방향정보를 기반으로 한 자연영상의 분류 및 검색뿐만 아니라 다양한 산업분야(재난경보, 소방방재, 교통정보 등) 에서 긴요하게 활용될 수 있을 것이다.
본 논문은 컬러 질의 영상의 효과적인 검출을 위해 공간 컬러모델 및 특징점 정합 방법을 이용한 객체 기반 영상 검색 방법을 제안한다. 제안하는 방법은 선행 연구 되었던 컬러 히스토그램 방법의 단점을 극복하고, 데이터베이스 영상과 질의 영상의 컬러 유사도를 사용자 조작 없이 실시간 분할 검출한다. 이를 위해 HMMD 모델과 러프 집합 이론을 이용하였다. 여기서 질의 영상의 검출을 위해 질의 영상과 데이터베이스 영상 간의 색상 유사도를 비교하여 관심 영역을 선택하고, 관심 영역에서 SIFT 정합 방법을 이용하여 검색한다. 실험 결과, 본 논문에서 제안하는 방법이 기존 방법보다 우수한 검출율을 보임을 확인하였다.
현재 방송 및 인터넷분야에서는 멀티미디어 정보가 급격히 증가하고 있다. 본 논문에서는 멀티미디어 정보 중에서 정지영상 검색을 위해 사용자가 질의(query)를 원하는 물체영역을 선택한 후 유사물체를 영상 데이터베이스 내에서 검색할 수 있는 내용기반 영상검색 시스템을 구현하였다. 질의영상으로부터 우선 컬러특성을 추출하기 위해 제안한 방법으로 색상을 HSV 변환한 후 히스토그램을 구해 데이터베이스영상과 히스토그램 인터섹션을 통해 유사치를 구한다 또한 질의영상을 그레이영상으로도 변환시켜 웨블릿 변환한 후 밴디드 오토코릴로그램과 GLCM을 통해 공간적 그레이분포와 질감특성을 추출하여 유사치를 구한다. 그리고 2개의 유사치를 더하여 최종 유사도를 결정하는데 이때 각 유사치에 가중치를 적용하였다. 질의영상으로부터 컬러영상 특성뿐만 아니라 그레이영상 특성도 파악하여 단점을 보완하였고 실험결과에서도 소환성(recall) 및 정확성(precision)이 향상됨을 볼 수 있었다. 또한 가중치를 적용함으로써 검색효율이 개선되었다.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.361-365
/
2002
Rain-rate retrieval using the NOAA/AMSU (Advanced Microwave Sounding Unit) (Zaho et al., 2001) has been implemented at METRI/KMA since 2001. Here, we present the results of the AMSU derived rain-rate and validation result, especially for the rainfall associated with the tropical cyclone for 2001. For the validation, we use rain-rate derived from the ground based radar and/or rainfall observation from the rain gauge in Korea. We estimate the bias score, threat score, bias, RMSE and correlation coefficient for total of 16 tropical cyclone cases. Bias score shows around 1.3 and it increases with the increasing threshold value of rain-rate, while the threat score extends from 0.4 to 0.6 with the increasing threshold value of precipitation. The averaged rain-rate for at all 16 cases is 3.96mm/hr and 1.41mm/hr for the retrieved from AMSU and the ground observation, respectively. On the other hand, AMSU rain-rate shows a much better agreement with the ground based observation over inner part of tropical cyclone than over the outer part (Correlation coefficient for convective region is about 0.7, while it is only about 0.3 over the stratiform region). The larger discrepancy of tile correlation coefficient with the different part of the tropical cyclone is partly due to the time difference in between ice water path and surface rainfall. This results indicates that it might be better to develop the algorithm for different rain classes such as convective and stratiform.
본 논문은 IPTV에서 방영되는 디지털 콘텐츠에서 검색하고자 하는 컷의 위치 정보를 검색하는데, 이때 색 분포에 관한 특징 정보를 이용한 FE-CBIRS을 제안한다. 기존 CBIRS에서는 색상과 모양에 대한 정보를 추출하여 이미지를 구분하는 특징정보로써 활용하며, 이미지를 세그멘테이션 처리하여 얻은 부분영역 특징정보를 전체 이미지의 특징정보와 함께 사용하여 검색하는 방법을 제시하였다. 또한 적용되는 색상 특징 정보의 경우 색상, 채도, 명도의 각각에 대한 평균, 표준편차, 왜도를 사용하며 부분영역을 특징정보로 적용하는 경우 대표색상만을 사용한다. 아울러 모양특징정보의 경우 추출된 부분영역들에 대한 불변 모멘트가 주요하게 사용된다. 이로 인한 처리시간의 문제, 정확성의 문제가 제기되어 왔다. 그러나 본 논문에서 제시하는 방법에서는 추출된 색상 특징정보들을 클래스별로 구분하여 인덱싱 하고 검색 시 비교대상 이미지를 해당 컷에 한정하여 적용하므로서 검색속도를 향상시키도록 하였다.
본 논문에서는 영역병합 방법을 이용한 칼라 영상 분할 방법을 제안하였다. 영상 분할 전단계에서 비선형 필터링 방법을 이용한 평활화와 채도 강화 및 명도 평균화를 수행하여, 영상 내 존재하는 비균질성을 줄이고, 칼라 히스토그램의 zero-crossing 정보를 이용한 비균일 양자화를 수행하여 유사한 칼라성분을 가지는 영역들을 분할하였다. 웨이브릿 변환의 고주파 대역 에너지를 이용하여 분할된 초기 영역의 윤곽성분 강도를 측정하였고, 이를 통해 병합 후 후보영역을 선정하였다. 영역병합을 위한 영역간 유사도 측정은 R, G, B 칼라성분의 유클리디안 거리를 측정하여 수행하였다. 제안된 방법은 기존의 방법에 비해 불규칙한 광원으로 불필요한 영역이 분할되는 것을 줄일 수 있었고, 이를 실험을 통해 입증하였다.
We propose an enhanced version of the local binary pattern (LBP) operator for texture extraction in images in the context of image retrieval. The novelty of our proposal is based on the observation that the LBP exploits only the lowest kind of local information through the global histogram. However, such global Histograms reflect only the statistical distribution of the various LBP codes in the image. The block based LBP, which uses local histograms of the LBP, was one of few tentative to catch higher level textural information. We believe that important local and useful information in between the two levels is just ignored by the two schemas. The newly developed method: gradual locality integration of binary patterns (GLIBP) is a novel attempt to catch as much local information as possible, in a gradual fashion. Indeed, GLIBP aggregates the texture features present in grayscale images extracted by LBP through a complex structure. The used framework is comprised of a multitude of ellipse-shaped regions that are arranged in circular-concentric forms of increasing size. The framework of ellipses is in fact derived from a simple parameterized generator. In addition, the elliptic forms allow targeting texture directionality, which is a very useful property in texture characterization. In addition, the general framework of ellipses allows for taking into account the spatial information (specifically rotation). The effectiveness of GLIBP was investigated on the Corel-1K (Wang) dataset. It was also compared to published works including the very effective DLEP. Results show significant higher or comparable performance of GLIBP with regard to the other methods, which qualifies it as a good tool for scene images retrieval.
내용 기반의 비디오 인덱싱 및 검색을 위해서는 비디오 데이타를 셧(shot)으로 분할하고, 또 각 셧을 나타내는 대표 프레임을 선택하는 것이 필요하다. 하지만, 대표 프레임을 선택하는 것은 주관적이어서 일관되게 자동적으로 대표 프레임을 선택하는 것은 쉬운 문제가 아니다. 본 논문에서는 각 프레임에서의 영역을 바탕으로한 컨텐트 정보 및 시간 축 상의 변화를 이용하여 계층적으로 대표 프레임을 선택하는 방법을 제안한다. 먼저, 비디오 셧에서 카메라 모션을 검출하여 이에 따라 비디오 셧을 분류한다. 다음, 분류된 비디오 셧에 컨텐트의 중요도를 계산하기 위한 퍼지 규칙을 적용하여 대표 프레임을 선택한다. 끝으로, 선택되는 대표 프레임의 수는 브라우징 상세도(detailness)에 따라 계층적으로 선택되게끔 한다.
Journal of Electrical Engineering and information Science
/
제1권2호
/
pp.134-144
/
1996
In this paper, we propose a new access method, called the HG-tree, to support indexing and retrieval by image content in large image databases. Image content is represented by a point in a multidimensional feature space. The types of queries considered are the range query and the nearest-neighbor query, both in a multidimensional space. Our goals are twofold: increasing the storage utilization and decreasing the area covered by the directory regions of the index tree. The high storage utilization and the small directory area reduce the number of nodes that have to be touched during the query processing. The first goal is achieved by absorbing splitting if possible, and when splitting is necessary, converting two nodes to three. The second goal is achieved by maintaining the area occupied by the directory region minimally on the directory nodes. We note that there is a trade-off between the two design goals, but the HG-tree is so flexible that it can control the trade-off. We present the design of our access method and associated algorithms. In addition, we report the results of a series of tests, comparing the proposed access method with the buddy-tree, which is one of the most successful point access methods for a multidimensional space. The results show the superiority of our method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.