• Title/Summary/Keyword: Region of interest(ROI) extraction

Search Result 65, Processing Time 0.023 seconds

The Extraction of ROI(Region Of Interest)s Using Noise Filtering Algorithm Based on Domain Heuristic Knowledge in Breast Ultrasound Image (유방 초음파 영상에서 도메인 경험 지식 기반의 노이즈 필터링 알고리즘을 이용한 ROI(Region Of Interest) 추출)

  • Koo, Lock-Jo;Jung, In-Sung;Choi, Sung-Wook;Park, Hee-Boong;Wang, Gi-Nam
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.1
    • /
    • pp.74-82
    • /
    • 2008
  • The objective of this paper is to remove noises of image based on the heuristic noises filter and to extract a tumor region by using morphology techniques in breast ultrasound image. Similar objective studies have been conducted based on ultrasound image of high resolution. As a result, efficiency of noise removal is not fine enough for low resolution image. Moreover, when ultrasound image has multiple tumors, the extraction of ROI (Region Of Interest) is not accomplished or processed by a manual selection. In this paper, our method is done 4 kinds of process for noises removal and the extraction of ROI for solving problems of restrictive automated segmentation. First process is that pixel value is acquired as matrix type. Second process is a image preprocessing phase that is aimed to maximize a contrast of image and prevent a leak of personal information. In next process, the heuristic noise filter that is based on opinion of medical specialist is applied to remove noises. The last process is to extract a tumor region by using morphology techniques. As a result, the noise is effectively eliminated in all images and a extraction of tumor regions is possible though one ultrasound image has several tumors.

Robust Lip Extraction and Tracking of the Mouth Region

  • Min, Duk-Soo;Kim, Jin-Young;Park, Seung-Ho;Kim, Ki-Jung
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.927-930
    • /
    • 2000
  • Visual features of lip area play an important role in the visual speech information. We are concerned about correct lip area as region of interest (ROI). In this paper, we propose a robust and fast method for locating the mouth corners. Also, we define a region of interest at mouth during speech. A method, which we have used, only uses the horizontal and vertical image operators at mouth area. This searching is performed by fitting the ROI-template to image with illumination control. Most of the lip extraction algorithms are dependent on luminosity of image. We just used the binary image where the variable threshold is applied. The variable threshold varies to illumination condition. In order to control those variations, the gray-tone is converted to binary image by threshold, which is obtained through Multiple Linear Regression Analysis (MLRA) about divided 2D special region. Thus we obtained the region of interest at mouth area, which is the robust extraction about illumination. A region of interest is automatically extracted.

  • PDF

An Efficient Partial Matching System and Region-based Representation for 2D Images (2D 영상의 효과적인 부분 정합 시스템과 영역기반 영상 표현)

  • Kim, Seon-Jong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.868-874
    • /
    • 2007
  • This paper proposes an efficient partial matching system and representation by using a region-based method for 2D image, and we applied to an extraction of the ROI(Region of Interest) according to its matching score. The matching templates consist of the global pattern and the local one. The global pattern can make it by using region-based relation between center region and its rest regions in an object. And, the local pattern can be obtained appling to the same method as global, except relation between objects. As the templates can be normalized, we use this templates for extraction of ROI with invariant to size and position. And, our system operates only one try to match, due to normalizing of region size. To use our system for searching and examining if it's the ROI by evaluating the matching function, at first, we are searching to find candidate regions with the global template. Then, we try to find the ROI among the candidates, and it works this time by using the local template. We experimented to the binary and the color image respectively, they showed that the proposed system can be used efficiently for representing of the template and the useful applications, such as partially retrievals of 2D image.

A Study on High-Speed Extraction of Bar Code Region for Parcel Automatic Identification (소포 자동식별을 위한 바코드 관심영역 고속 추출에 관한 연구)

  • Park, Moon-Sung;Kim, Jin-Suk;Kim, Hye-Kyu;Jung, Hoe-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.915-924
    • /
    • 2002
  • Conventional Systems for parcel sorting consist of two sequences as loading the parcel into conveyor belt system and post-code input. Using bar code information, the parcels to be recorded and managed are recognized. This paper describes a 32 $\times$ 32 sized mini-block inspection to extract bar code Region of Interest (ROI) from the line Charged Coupled Device (CCD) camera capturing image of moving parcel at 2m/sec speed. Firstly, the Min-Max distribution of the mini-block has been applied to discard the background of parcel and region of conveying belts from the image. Secondly, the diagonal inspection has been used for the extraction of letters and bar code region. Five horizontal line scanning detects the number of edges and sizes and ROI has been acquired from the detection. The wrong detected area has been deleted by the comparison of group size from labeling processes. To correct excluded bar code region in mini-block processes and for analysis of bar code information, the extracted ROI 8 boundary points and decline distribution have been used with central axis line adjustment. The ROI extraction and central axis creation have become enable within 60~80msec, and the accuracy has been accomplished over 99.44 percentage.

A High Speed Road Lane Detection based on Optimal Extraction of ROI-LB (관심영역(ROI-LB)의 최적 추출에 의한 차선검출의 고속화)

  • Cheong, Cha-Keon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.253-264
    • /
    • 2009
  • This paper presents an algorithm, aims at practical applications, for the high speed processing and performance enhancement of lane detection base on vision processing system. As a preprocessing for high speed lane detection, the vanishing line estimation and the optimal extraction of region of interest for lane boundary (ROI-LB) can be processed to reduction of detection region in which high speed processing is enabled. Image feature information is extracted only in the ROI-LB. Road lane is extracted using a non-parametric model fitting and Hough transform within the ROI-LB. With simultaneous processing of noise reduction and edge enhancement using the Laplacian filter, the reliability of feature extraction can be increased for various road lane patterns. Since outliers of edge at each block can be removed with clustering of edge orientation for each block within the ROI-LB, the performance of lane detection can be greatly improved. The various real road experimental results are presented to evaluate the effectiveness of the proposed method.

Auto Correction Technique of Photography Composition Using ROI Extraction Method (ROI 추출을 통한 사진 구도 자동 보정 기법)

  • Ha, Ho-Saeng;Park, Dae-Hyun;Kim, Yoon
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.1
    • /
    • pp.113-122
    • /
    • 2013
  • In this paper, we propose the method that automatically corrects the composition of a picture stylishly as well as reliably by cropping pictures based on the Rule of Thirds. The region of interest (ROI) is extracted from a picture by applying the Saliency Map and the Image Segmentation technology, the composition of the photo is amended based on this area to satisfy the Rule of Thirds. In addition, since the face region of the person is added to ROI by the Face Detection technique and the composition is amended by the various scenario according to ROI, the little more natural picture is acquired. The experimental result shows that the photo of the corrected composition was naturally amended compared with the original photo.

ROI Based Object Extraction Using Features of Depth and Color Images (깊이와 칼라 영상의 특징을 사용한 ROI 기반 객체 추출)

  • Ryu, Ga-Ae;Jang, Ho-Wook;Kim, Yoo-Sung;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.395-403
    • /
    • 2016
  • Recently, Image processing has been used in many areas. In the image processing techniques that a lot of research is tracking of moving object in real time. There are a number of popular methods for tracking an object such as HOG(Histogram of Oriented Gradients) to track pedestrians, and Codebook to subtract background. However, object extraction has difficulty because that a moving object has dynamic background in the image, and occurs severe lighting changes. In this paper, we propose a method of object extraction using depth image and color image features based on ROI(Region of Interest). First of all, we look for the feature points using the color image after setting the ROI a range to find the location of object in depth image. And we are extracting an object by creating a new contour using the convex hull point of object and the feature points. Finally, we compare the proposed method with the existing methods to find out how accurate extracting the object is.

A Revised Dynamic ROI Coding Method Based On The Automatic ROI Extraction For Low Depth-of-Field JPEG2000 Images (낮은 피사계 심도 JPEG2000 이미지를 위한 자동 관심영역 추출기반의 개선된 동적 관심영역 코딩 방법)

  • Park, Jae-Heung;Kim, Hyun-Joo;Shim, Jong-Chae;Yoo, Chang-Yeul;Seo, Yeong-Geon;Kang, Ki-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.63-71
    • /
    • 2009
  • In this study, we propose a revised dynamic ROI (Region-of-Interest) coding method in which the focused ROI is automatically extracted without help from users during the recovery process of low DOF (Depth-of-Field) JPEG2000 image. The proposed method creates edge mask information using high frequency sub-band data on a specific level in DWT (Discrete Wavelet Transform), and then identifies the edge code block for a high-speed ROI extraction. The algorithm scans the edge mask data in four directions by the unit of code block and identifies the edge code block simply and fastly using a edge threshold. As the results of experimentation applying for Implicit method, the proposed method showed the superiority in the side of speed and quality comparing to the existing methods.

The High-Speed Extraction of Interest Region in the Parcel Image of Large Size (대용량 소포영상에서 관심영역 고속추출 방법에 관한 연구)

  • Park, Moon-Sung;Bak, Sang-Eun;Kim, In-Soo;Kim, Hye-Kyu;Jung, Hoe-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.691-702
    • /
    • 2004
  • In this paper, we propose a sequence of method which extrats ROIs(Region of Interests) rapidly from the parcel image of large size. In the proposed method, original image is spilt into the small masks, and the meaningful masks, the ROIs, are extracted by two criterions sequentially The first criterion is difference of pixel value between Inner points, and the second is deviation of it. After processing, some informational ROIs-the areas of bar code, characters, label and the outline of object-are acquired. Using diagonal axis of each ROI and the feature of various 2D bar code, the area of 2D bar code can be extracted from the ROIs. From an experiment using above methods, various ROIs are extracted less than 200msec from large-size parcel image, and 2D bar code region is selected by the accuracy of 100%.

Fast Clothing Area Extraction and Matching Based on ROI (ROI기반 고속 의상 영역 추출 및 매칭)

  • Kim, Hye-Min;Jeong, Chang-Seong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.976-977
    • /
    • 2015
  • 본 논문에서 우리는 입력영상에서 ROI(Region Of Interest) 지정을 이용한 의상 추천시스템을 제안한다. 의상영역 추출에 있어 ROI의 지정은 매칭 오류를 감소시키면서 매칭 속도를 향상시킬 수 있다. 우리는 평가부분에서 제안된 방을 통해 수행된 매칭이 빠르며 성공적으로 이루어졌음을 보인다.