• Title/Summary/Keyword: Region of Interest (ROI)

Search Result 482, Processing Time 0.018 seconds

The Evaluation of Difference according to Image Scan Duration in PET Scan using Short Half-Lived Radionuclide (단 반감기 핵종을 이용한 PET 검사 시 영상 획득 시간에 따른 정량성 평가)

  • Hong, Gun-Chul;Cha, Eun-Sun;Kwak, In-Suk;Lee, Hyuk;Park, Hoon;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.102-107
    • /
    • 2012
  • Purpose : Because of the rapid physical decay of the short half-lived radionuclide, counting of event for image is very limited. In this reason, long scan duration is applied for more accurate quantitative analysis in the relatively low sensitive examination. The aim of this study was to evaluate the difference according to scan duration and investigate the resonable scan duration using the radionuclide of 11C and 18F in PET scan. Materials and Methods : 1994-NEMA Phantom was filled with 11C of $30.08{\pm}4.22MBq$ and 18F of $40.08{\pm}8.29MBq$ diluted with distilled water. Dynamic images were acquired 20frames/1minute and static image was acquired for 20minutes with 11C. And dynamic images were acquired 20frames/2.5minutes and static image was acquired for 50minutes with 18F. All of data were applied with same reconstruction method and time decay correction. Region of interest (ROI) was set on the image, maximum radioactivity concentration (maxRC, kBq/mL) was compared. We compared maxRC with acquired dynamic image which was summed one bye one to increase the total scan duration. Results : maxRC over time of 11C was $3.85{\pm}0.45{\sim}5.15{\pm}0.50kBq/mL$ in dynamic image, and static image was $2.15{\pm}0.26kBq/mL$. In case of 18F, the maxRC was $9.09{\pm}0.42{\sim}9.48{\pm}0.31kBq/mL$ in dynamic image and $7.24{\pm}0.14kBq/mL$ in static. In summed image of 11C, as total scan duration was increased to 5, 10, 15, 20minutes, the maxRC were $2.47{\pm}0.4$, $2.22{\pm}0.37$, $2.08{\pm}0.42$, $1.95{\pm}0.55kBq/mL$ respectively. In case of 18F, the total scan duration was increased to 12.5, 25, 37.5, and 50minutes, the maxRC were $7.89{\pm}0.27$, $7.61{\pm}0.23$, $7.36{\pm}0.21$, $7.31{\pm}0.23kBq/mL$. Conclusion : As elapsed time was increased after completion of injection, the maxRC was increased by 33% and 4% in dynamic study of 11C and 18F respectively. Also the total scan duration was increased, the maxRC was reduced by 50% and 20% in summed image of 11C and 18F respectively. The percentage difference of each result is more larger in study using relatively shorter half-lived radionuclide. It appears that the accuracy of decay correction declined not only increment of scan duration but also increment of elapsed time from a starting point of acquisition. In study using 18F, there was no big difference so it's not necessary to consider error of quantitative evaluation according to elapsed time. It's recommended to apply additional decay correction method considering decay correction the error concerning elapsed time or to set the scan duration of static image less than 5minutes corresponding 25% of half life in study using shorter half-lived radionuclide as 11C.

  • PDF

A Refined Method for Quantification of Myocardial Blood Flow using N-13 Ammonia and Dynamic PET (N-13 암모니아와 양전자방출단층촬영 동적영상을 이용하여 심근혈류량을 정량화하는 새로운 방법 개발에 관한 연구)

  • Kim, Joon-Young;Lee, Kyung-Han;Kim, Sang-Eun;Choe, Yearn-Seong;Ju, Hee-Kyung;Kim, Yong-Jin;Kim, Byung-Tae;Choi, Yong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.73-82
    • /
    • 1997
  • Regional myocardial blood flow (rMBF) can be noninvasively quantified using N-13 ammonia and dynamic positron emission tomography (PET). The quantitative accuracy of the rMBF values, however, is affected by the distortion of myocardial PET images caused by finite PET image resolution and cardiac motion. Although different methods have been developed to correct the distortion typically classified as partial volume effect and spillover, the methods are too complex to employ in a routine clinical environment. We have developed a refined method incorporating a geometric model of the volume representation of a region-of-interest (ROI) into the two-compartment N-13 ammonia model. In the refined model, partial volume effect and spillover are conveniently corrected by an additional parameter in the mathematical model. To examine the accuracy of this approach, studies were performed in 9 coronary artery disease patients. Dynamic transaxial images (16 frames) were acquired with a GE $Advance^{TM}$ PET scanner simultaneous with intravenous injection of 20 mCi N-13 ammonia. rMBF was examined at rest and during pharmacologically (dipyridamole) induced coronary hyperemia. Three sectorial myocardium (septum, anterior wall and lateral wall) and blood pool time-activity curves were generated using dynamic images from manually drawn ROIs. The accuracy of rMBF values estimated by the refined method was examined by comparing to the values estimated using the conventional two-compartment model without partial volume effect correction rMBF values obtained by the refined method linearly correlated with rMBF values obtained by the conventional method (108 myocardial segments, correlation coefficient (r)=0.88). Additionally, underestimated rMBF values by the conventional method due to partial volume effect were corrected by theoretically predicted amount in the refined method (slope(m)=1.57). Spillover fraction estimated by the two methods agreed well (r=1.00, m=0.98). In conclusion, accurate rMBF values can be efficiently quantified by the refined method incorporating myocardium geometric information into the two-compartment model using N-13 ammonia and PET.

  • PDF