The evaluation of GB stones with ultrasound has proved to be useful procedure in patient with symptoms of cholelithiasis. GB is evaluated for size, wall thickness, presence of internal reflections within the lumen and posterior acoustic shadowing or enhancement in Ultrsonography. The patient position should be shifted during procedure to demonstrate further the presence of stone within the GB. Patient scanned at the Rt. subcostal region in supine, right lateral, Lt. down decubitus, and upright sitting position. So GB stone should shift to dependent area of GB. Often, GB is not markedly distended in the presence of cholethiasis, and so the diagnosis becomes more difficult. One of the more difficult areas for detection of a GB stones are embeded in the cystic duct region. And since the GB is adjacent to the duodenum and hepatic flexure, its may be difficult to visualizing a GB stone. When patient study position changes frome supine to other position, stones displaced the site. But if its are polyps, not changes the site whatever patient positions. It is very important to what make different GB stones or polyps. We have studied about mobility of GB stones according to the patients position(supine, Lt. down decubitus, $30^{\circ} LAO. sitting and hand-knee). So we have a result, stones wherever localized within the GB, changed 100% its position in the hand-knee position and the others appeared at least 90%. In this study, when a large stones are located through fundus-body and body-neck, does not changing the stones position in spite of varied patient's positions. But hand-knee positions can identified GB stones, because its make changed the position of stons from posterior wall to anterior wall within the GB. We recommend the hand-knee position for differentiation GB stones from polyps.
Kwon, Oh Jun;Hur, Jae;Lee, Han Wool;Kim, Joo Yeon;Park, Min Soo;Roo, Dong Ook;Kang, Chun Goo;Kim, Jae Sam
The Korean Journal of Nuclear Medicine Technology
/
v.19
no.1
/
pp.30-36
/
2015
Purpose Whole body bone scan, which makes up a largest percentage of nuclear medicine tests, has high sensitivity and resolution about bone lesion like osteomyelitis, fracture and the early detection of primary cancer. However, any standard for valuation has not yet been created except minimum factor. Therefore, in this study, we will analysis the method which show a quantitative evaluation index in whole body bone scan. Materials and Methods This study is conducted among 30 call patients, who visited the hospital from April to September 2014 with no special point of view about bone lesion, using GE INFINIA equipment. Enumerated data is measured mainly with patient's whole body count and lumbar vertabrae, and the things which include CNR (Contrast to Noise ratio), SNR (Signal to Noise ratio) are calculated according to the mean value signal and standard deviation of each lumbar vertabrae. In addition, the numerical value with the abdominal thickness is compared to each value by the change of scan speed and tissue equivalent material throughout the phantom examination, and compared with 1hours deleyed value. Completely, on the scale of ten, 2 reading doctors and 5 skilled radiologists with 5-years experience analysis the correlation between visual analysis with blind test and quantitative calculation. Results The whole body count and interest region count of patients have no significant correlation with visual analysis value throughout the blind test(P<0.05). There is definite correlation among CNR and SNR. In phantom examination, Value of the change was caused by the thickness of the abdomen and the scan speed. And The poor value of the image in the subject as a delay test patient could be confirmed that the increase tendency. Conclusion Now, a standard for valuation has not been created in whole body bone scan except minimum factor. In this study, we can verify the significant correlation with blind test using CNR and SNR and also assure that the scan speed is a important factor to influence the imagine quality from the value. It is possible to be some limit depending on the physiology function and fluid intake of patient even if we progress the evaluation in same condition include same injection amount, same scan speed and so on. However, that we prove the significant evaluation index by presenting quantitative calculation objectively could be considered academic value.
Deep learning model is a kind of neural networks that allows multiple hidden layers. There are various deep learning architectures such as convolutional neural networks, deep belief networks and recurrent neural networks. Those have been applied to fields like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they have been shown to produce state-of-the-art results on various tasks. Among those architectures, convolutional neural networks and recurrent neural networks are classified as the supervised learning model. And in recent years, those supervised learning models have gained more popularity than unsupervised learning models such as deep belief networks, because supervised learning models have shown fashionable applications in such fields mentioned above. Deep learning models can be trained with backpropagation algorithm. Backpropagation is an abbreviation for "backward propagation of errors" and a common method of training artificial neural networks used in conjunction with an optimization method such as gradient descent. The method calculates the gradient of an error function with respect to all the weights in the network. The gradient is fed to the optimization method which in turn uses it to update the weights, in an attempt to minimize the error function. Convolutional neural networks use a special architecture which is particularly well-adapted to classify images. Using this architecture makes convolutional networks fast to train. This, in turn, helps us train deep, muti-layer networks, which are very good at classifying images. These days, deep convolutional networks are used in most neural networks for image recognition. Convolutional neural networks use three basic ideas: local receptive fields, shared weights, and pooling. By local receptive fields, we mean that each neuron in the first(or any) hidden layer will be connected to a small region of the input(or previous layer's) neurons. Shared weights mean that we're going to use the same weights and bias for each of the local receptive field. This means that all the neurons in the hidden layer detect exactly the same feature, just at different locations in the input image. In addition to the convolutional layers just described, convolutional neural networks also contain pooling layers. Pooling layers are usually used immediately after convolutional layers. What the pooling layers do is to simplify the information in the output from the convolutional layer. Recent convolutional network architectures have 10 to 20 hidden layers and billions of connections between units. Training deep learning networks has taken weeks several years ago, but thanks to progress in GPU and algorithm enhancement, training time has reduced to several hours. Neural networks with time-varying behavior are known as recurrent neural networks or RNNs. A recurrent neural network is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs. Early RNN models turned out to be very difficult to train, harder even than deep feedforward networks. The reason is the unstable gradient problem such as vanishing gradient and exploding gradient. The gradient can get smaller and smaller as it is propagated back through layers. This makes learning in early layers extremely slow. The problem actually gets worse in RNNs, since gradients aren't just propagated backward through layers, they're propagated backward through time. If the network runs for a long time, that can make the gradient extremely unstable and hard to learn from. It has been possible to incorporate an idea known as long short-term memory units (LSTMs) into RNNs. LSTMs make it much easier to get good results when training RNNs, and many recent papers make use of LSTMs or related ideas.
Kim, Sang-Eun;Na Duk-Lyul;Lee, Jeong-Rim;Choi, Yong;Lee, Kyung-Han;Choe Yearn-Seong;Kim, Doh-Kwan;Kim, Byung-Tae;Lee, Kwang-Ho;Kim, Seung-Tai P.
The Korean Journal of Nuclear Medicine
/
v.30
no.3
/
pp.299-314
/
1996
The purpose of the present study was to validate the use of tissue radioactivity ratios instead of regional metabolic rates for the assessment of regional metabolic changes in Alzheimer's disease(AD) with [$^{18}F$]FDG PET and to examine the correlation of ratio indices with the severity of cognitive impairment in AD. Thirty-seven AD Patients(age $68{\pm}9 yrs$, $mean{\pm}s.d.$; 36 probable and 1 definite AD), 28 patients with dementia of non-Alzheimer type(age $66{\pm}7 yrs$), and 17 healthy controls(age $66{\pm}4 yrs$) underwent [$^{18}F$]FDG PET imaging. Two simplified radioactivity ratio indices were calculated from 37-66 min image: region-to-cerebellar radioactivity ratio(RCR) and a composite radioactivity ratio(a ratio of radioactivity in the most typically affected regions over the least typically affected regions: CRR). Local cerebral metabolic rate for glucose(LCMRglu) was also measured using a three-compartment, five-parameter tracer kinetic model. The ratio indices were significantly lower in AD patients than in controls(RCR in temporoparietal cortex, $0.949{\pm}0.136$ vs. $1.238{\pm}0.129$, p=0.0004; RCR in frontal cortex, $1.027{\pm}0.128$ vs. $1.361{\pm}0.151$, p<0.0001; CRR, $0.886{\pm}0.096$ vs. $1.032{\pm}0.042$. p=0.0024). On the RCR analysis, 86% of AD patients showed a pattern of bilateral temporoparietal hypometabolism with or without frontal involvement; hypometabolism was unilateral in 11% of the patients. When bilateral temporoparietal hypometabolism was considered to be suggestive of AD, the sensitivity and specificity of the RCR analysis for the differential diagnosis of AD were 86% and 73%, respectively. The RCR was correlated significantly with the macroparameter K [$K_1k_3/(k_2+k_3)$] (r=0.775, p<0.0001) and LCMRglu(r=0.633, p=0.0002) measured using the kinetic model. In patients with AD, both average RCR of cortical association areas and CRR were correlated with Mini-Mental Status Examination(r=0.565, p=0.0145; r=0.642, p=0.0031, respectively), Clinical Dementia Rating(r=-0.576, p=0.0124; r=-0.591, p=0.0077), and total score of Mattis Dementia Rating Scale (r=0.574, p=0.0648; r=0.737, p=0.0096). There were also significant correlations between memory and language impairments and corresponding regional RCRs. The results suggest that the [$^{18}F$]FDG PET ratio indices, RCR and CRR, reflect global and regional metabolic rates and correlate with the severity of cognitive impairment in AD. The simplified ratio analysis may be clinically useful for the differential diagnosis and serial monitoring of the disease.
Song Heung-Kwon;Kwon Kyung-Tae;Park Cheol-Su;Yang Oh-Nam;Kim Min-Su;Kim Jeong-Man
The Journal of Korean Society for Radiation Therapy
/
v.17
no.2
/
pp.125-131
/
2005
Purpose : For stereotactic radiosurgery (SRS) of a tumor in the region whose movement due to respiration is significant, like Lung lower lobe, the gated therapy, which delivers radiation dose to the selected respiratory phases when tumor motion is small, was performed using the Respiratory gating system and its clinical effectiveness was evaluated. Materials and Methods : For two SRS patients with a tumor in Lung lower lobe, a marker block (infrared reflector) was attached on the abdomen. While patient' respiratory cycle was monitored with Real-time Position Management (RPM, Varian, USA), 4D CT was performed (10 phases per a cycle). Phases in which tumor motion did not change rapidly were decided as treatment phases. The treatment volume was contoured on the CT images for selected treatment phases using maximum intensity projection (MIP) method. In order to verify setup reproducibility and positional variation, 4D CT was repeated. Results : Gross tumor volume (GTV) showed maximum movement in superior-inferior direction. For patient #1, motion of GTV was reduced to 2.6 mm in treatment phases ($30{\sim}60%$), while that was 9.4 mm in full phases ($0{\sim}90%$) and for patient #2, it was reduced to 2.3 mm in treatment phases ($30{\sim}70%$), while it was 11.7 mm in full phases ($0{\sim}90%$). When comparing two sets of CT images, setup errors in all the directions were within 3 mm. Conclusion : Since tumor motion was reduced less than 5 mm, the Respiratory gating system for SRS of Lung lower lobe is useful.
The samples composed of a GST thin film and the protective layers of $ZnS-SiO_2$ or $Al_2O_3$ coated on c-Si substrate were prepared by using the magnetron sputtering method. Samples of three different structures were prepared, that is, i) the GST single film on c-Si substrate, ii) the GST film sandwiched by the protective $ZnS-SiO_2$ layers on c-Si substrate, and iii) the GST film sandwiched by $Al_2O_3$ protective layers on c-Si substrate. The ellipsometric constants in the temperature range from room temperature to $700^{\circ}C$ were obtained by using the in-situ ellipsometer equipped with a conventional heating chamber. The measured ellipsometric constants show strong variations versus temperature. The variation of ellipsometric constants at the temperature region higher than $300^{\circ}C$ shows different behaviors as the ambient medium is changed from in air to in vacuum or the protective layers are changed from $ZnS-SiO_2$ to $Al_2O_3$. Since the long heating time of 1-2 hours is believed to be the origin of the high temperature variation of ellipsometric constants upon the heating environment and the protective layers, a PRAM (Phase-Change Random Access Memory) recorder is introduced to reduce the heating time drastically. By using the PRAM recorder, the GST samples are heated up to $700^{\circ}C$ decomposed preventing its partial evaporation or chemical reactions with adjacent protective layers. The surface image obtained by SEM and the surface micro-roughness verified by AFM also confirmed that samples prepared by the PRAM recorder have smoother surface than the samples prepared by using the conventional heater.
Purpose Recently PET/CT image's attenuation correction is used CTAC(Computed Tomgraphy Attenuation Correction). it can quantitative evaluation by SUV(Standard Uptake Value). This study's purpose is to evaluate SUV and to find proper CT kernel using CTAC with applied various CT kernel to PET/CT construction. Materials and Methods Biograph mCT 64 was used for the equipment. We were performed on 20 patients who had examed at our hospital from february through March 2017. Using NEMA IEC Body Phantom, The data was reconstructed PET/CT images with CTAC appiled various CT kernel. ANOVA was used to evaluated the significant difference in the result. Results The result of measuring the radioactivity concentration of Phantom was B45F 96% and B80F 6.58% against B08F CT kernel, each respectively. the SUVmax increased to B45F 0.86% and B80F 6.54% against B08F CT kernel, In case of patient's parts data, the Lung SUVmax increased to B45F 1.6% and B80F 6.6%, Liver SUVmax increased to B45F 0.7% and B80F 4.7%, and Bone SUVmax increased to B45F 1.3% and B80F 6.2%, respectively. As for parts of patient's about Standard Deviation(SD), the Lung SD increased to B45F 4.2% and B80F 15.4%, Liver SD increased to B45F 2.1% and B80F 11%, and Bone SD increased to B45F 2.3% and B80F 14.7%, respectively. There was no significant difference discovered in three CT kernel (P >.05). Conclusion When using increased noise CT kernel for PET/CT reconstruction, It tends to change both SUVmax and SD in ROI(region of interest), Due to the increase the CT kernel number, Sharp noise increased in ROI. so SUVmax and SD were highly measured, but there was no statistically significant difference. Therefore Using CT kernel of low variation of SD occur less variation of SUV.
Purpose : The aim of this study was to identify the brain areas in which reductions of regional cerebral blood flow (rCBF) were correlated with decline of general mental function, measured by Mini-Mental State Examination (MMSE). Materials and Methods : Tc-99m HMPAO brain SPECT was peformed in 9 probable AD patients at the initial and follow-up periods of 1.8 years (average) after the first study. MMSE scores were also measured in both occasions. The mean MMSE score of the initial study 16.4 (range: 5 - 24) and the mean MMSE score of the follow-up was 8.1 (range: 0 - 17). Each SPECT image was normalized to the cerebellar activity and a correlation analysis was peformed between the level of rCBF in AD patients and the MMSE scores by voxel-based analysis using SPM99 software. Results : Significant correlation was found between the blood-flow decrease in left inferior prefrontal region (BA 47) and left middle temporal legion (BA 21) and the MMSE score changes. Additional areas such as anterior and posterior cingulate cortices, precuneus, and bilateral superior and middle prefrontal regions showed the similar trends. Conclusions : A relationship was found between reduction of regional cerebral blood flow in left prefrontal and temporal areas and decline of cognitive function in Alzheimer's disease(AD) patients. This voxel-based analysis is useful in evaluating the progress of cognitive function in Alzheimer's disease.
The radiation therapy treatment technique is developed from 3D-CRT, IMRT to Tomotherapy. and these three technique was most widely using methods. We find out a comparison normal tissue doses and tumor dose of 3D-CRT, IMRT(Linac Based), and Tomotherapy on Head and Neck Cancer. We achieved radiological image used the Human model phantom (Anthropomorphic Phantom) and it was taken CT simulation (Slice Thickness : 3mm) and GTV was nasopharngeal region and PTV(including set-up margin) was GTV plus 2mm area. and transfer those images to the radiation planning system (3D-CRT - ADAC-Pinnacle3, Tomotherapy - Tomotherapy Hi-Art System). The prescription dose was 7020 cGy and measuring PTV's dose and nomal tissue (parotid gland, oral cavity, spinal cord). The PTV's doses was Tomotherapy, Linac Based - IMRT, 3D-CRT was 6923 cGy, 6901 cGy and 6718 cGy its dose value was meet TCP because its value was up to the 95% based on 7020 cGy, Nomal tissue (parotid gland, oral cavity, spinal cord) was 1966 cGy(Tomotherapy), 2405 cGy(IMRT), 2468 cGy(3D-CRT)[parotid gland], 2991 cGy(Tomotherapy), 3062 cGy(IMRT), 3684 cGy (3D-CRT)[oral cavity], 1768 cGy(Tomotherapy), 2151 cGy(IMRT), 4031 cGy(3D-CRT)[spinal cord] its value did not exceeded NTCP. All the treatment techniques are equated with tumor and nomal tissue doses. The 3D-CRT was worse than other techniques on dose distribution, but it is reasonable in terms of TCP and NTCP baseline Tomotherapy, IMRT -dose distribution was relatively superior- was hard to therapy to claustrophobic patients and patients with respiratory failure. Particularly, in case on Tomotherapy, it take MVCT before treatment so dose measurement will be unnecessary radiation exposure to patients. Conclusion, Tomotherapy was the best treatment technique and 2nd was IMRT, and 3rd 3D-CRT. But applicable differently depending on the the patient's condition even though dose not matter.
Park, Kyung-Won;Kang, Do-Young;Park, Min-Jeong;Cheon, Sang-Myung;Cha, Jae-Kwan;Kim, Sang-Ho;Kim, Jae-Woo
Nuclear Medicine and Molecular Imaging
/
v.41
no.6
/
pp.530-537
/
2007
Purpose: The aim of this study is to assess the specific patterns of regional cerebral blood flow (rCBF) in patients with the early stage of subcortical vascular dementia (SVaD) and Alzheimer's disease (AD) using Tc-99m HMPAO SPECT, and to compare the differences between the two conditions. Materials and Methods: Sixteen SVaD, 46 AD and 12 control subjects participated in this study. We included the patients with SVaD and AD according to NINCDS-ADRDA and NINDS-AIREN criteria. They were all matched for age, education and clinical dementia rating scores. Three groups were evaluated by Tc-99m HMPAO SPECT using statistical parametric mapping (SPM) for measuring rCBF. The SPECT data of patients with SVaD and AD were compared with those of normal control subjects and then compared with each other. Results: SPM analysis of the SPECT image showed significant perfusion deficits on the right temporal region and thalamus, left insula and superior temporal gyrus, both cingulate gyri and frontal subgyri in patients with SVaD and on the left supramarginal gyrus, superior temporal gyrus, postcentral gyrus and inferior parietal lobule, right fugiform gyrus and both cingulate gyri in AD compared with control subjects (uncorrected p<0.01). SVaD patients revealed significant hypoperfusion in the right parahippocampal gyrus with cingulated gyrus, left insula and both frontal subgyral regions compared with AD (uncorrected p<0.01). Conclusion: Our study shows characteristic and different pattern of perfusion deficits in patients with SVaD and AD, and these results may be helpful to discriminate the two conditions in the early stage of illness.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.