• Title/Summary/Keyword: Regenerative-cooling

Search Result 171, Processing Time 0.021 seconds

Comparisons of Life Prediction Method of Copper Alloy of Regenerative Cooling Chamber for Thrust Chamber (액체로켓 연소기 재생냉각 챔버용 구리합금의 피로수명 예측식 비교)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.90-97
    • /
    • 2010
  • A study about the fatigue life of copper alloy which is used in inner jacket of regenerative cooling chamber of liquid rocket engine has been performed. Mechanical properties of the material and fatigue life have been taken from tensile tests and low-cycle fatigue tests at room temperature and several elevated temperatures. Original universal slopes method, modified universal slopes method, Mitchell's method, Baumel and Seeger's method, and Ong's method have been used for predicting the fatigue data. It was found that the novel life prediction method should be developed for the copper alloys since almost all data have not been predicted well with the widely used methods.

Development of Bulging Process for Regenerative Cooling Nozzle of Liquid Rocket Thrust Chamber (액체로켓 연소기 재생냉각형 노즐의 벌징 공정 개발)

  • Ryu, Chul-Sung;Choi, Hwan-Suk
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.103-109
    • /
    • 2008
  • A study has been conducted on the bulging process of regenerative cooling nozzle which is essential for the manufacturing of liquid rocket thrust chamber. Tension tests have been performed for the material to be used for the development of the bulging process and mechanical properties are obtained by the test. Two or three bulging tools were required to complete the bulging process. The necking of the material was a major failure encountered in the bulging process and a research has revealed that grain size of the material has considerable effect on its occurrence. The presently developed bulging process with a controlled grain size material has been successfully applied to the manufacturing of subscale and 30-tonf full scale regeneratively cooled nozzle while demonstrating the applicability and usefulness of the presently developed bulging process.

  • PDF

Design and Fabrication of Technology Demonstration Model of 75 tonf Regenerative Cooling Thrust Chamber (75톤급 재생냉각 연소기 기술검증용 시제 설계 및 제작)

  • Kim, Jong-Gyu;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Mun-Ki;Kang, Dong-Hyuk;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.31-34
    • /
    • 2011
  • Design and fabrication of Technology Demonstration Model(TDM) of 75 tonf regenerative cooling thrust chamber were described. It has design chamber pressure of 60 bar, propellant mass flow rate of 243.6 kg/s, and nozzle expansion ratio of 12. It has a single welded structure of the mixing head and the chamber. Design and fabrication technologies established through this TDM can be used to development of flight model.

  • PDF

Numerical analysis on curtain cooling in Liquid Rocket Engine of 10tf-thrust Level using Kerosene as a Fuel (케로신을 연료로 하는 10톤급 액체로켓엔진의 막 냉각에 관한 해석적 연구)

  • 남궁혁준;한풍규;조원국
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.78-82
    • /
    • 2003
  • The cooling mechanism for a regenerative cooling liquid rocket engine of 10tf-thrust using kerosene as a fuel was studied from the viewpoint of curtain cooling. Based on the concept of a highly-stratified gas flow in the combustion chamber, the cross section of the combustion chamber was spilt into 2 independent parts, core and exterior part. Additional fuel is injected into the exterior section and gas temperature can be reduced in the exterior section. Consequently, the heat flux into the coolant and wall temperature are reduced and the thermal stability of a liquid rocket engine could be improved.

  • PDF

An Experimental Study on Cooling Characteristics for Uni-element Injector face according to the Swirl Chamber in Fuel Injector (연료 인젝터 스월 챔버 유무에 따른 단일 인젝터 페이스 냉각 특성 연구)

  • Jeon, Jun-Su;Shin, Hun-Cheol;Yang, Jae-Jun;Ko, Young-Sung;Kim, Yoo;Kim, Ji-Hoon;Chung, Hae-Seung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.148-151
    • /
    • 2007
  • We made two injectors that were equal to all design except for existence or nonexistence of swirl chamber of fuel part, because we want to find cooling characteristics at the injector face according to existence or non existence of swirl chamber of fuel part. And we set regenerative cooling channel in injector face for protecting injector face for prolonged combustion time. Two injectors were performed hot firing test, and then we compared cooling characteristics of two injectors. Also we compared O/F ratio effects on cooling characteristics and combustion characteristics.

  • PDF

Preliminary Design Plan for Determining Combustor Configuration of Regenerative-cooled Liquid Rocket Engine (재생냉각식 액체로켓엔진의 연소기 형상 결정을 위한 예비 설계 방안)

  • Son, Min;Seo, Min-Kyo;Koo, Ja-Ye;Cho, Won-Kook;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.83-89
    • /
    • 2011
  • A design plan was proposed for determining combustor configuration of regenerative- cooled liquid rocket engine in the process of preliminary design. Rocket performance and regenerative cooling results were calculated using the properties of combustion gas estimated in CEA. For required thrust, chamber pressure, atmosphere pressure and propellant mixture ratio the mass flow rate of propellants and combustor performance were predicted by one-dimensional and experimental correlations. Finally, determinable plan for the contour of combustor were presented through Rao nozzle design method.

Preliminary Design Plan for Determining Combustor Configuration of Regenerative-cooled Liquid Rocket Engine (재생냉각식 액체로켓엔진의 연소기 형상 결정을 위한 예비 설계 방안)

  • Son, Min;Seo, Min-Kyo;Koo, Ja-Ye;Cho, Won-Kook;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.37-42
    • /
    • 2010
  • A design plan was proposed for determining combustor configuration of regenerative- cooled liquid rocket engine in the process of preliminary design. Rocket performance and regenerative cooling results were calculated using the properties of combustion gas estimated in CEA. For required thrust, chamber pressure, atmosphere pressure and propellant mixture ratio the mass flow rate of propellants and combustor performance were predicted using one-dimensional and experimental equations. Finally, determinable plan for contour of combustor were presented through Rao nozzle design method.

  • PDF

NUMERICAL STUDIES ON FLOWS WITH STRONG PROPERTY VARIATIONS THROUGH STRAIGHT RECTANGULAR CHANNELS (곧은 사각채널을 통과하는 물성 변화가 큰 유동에 대한 수치해석)

  • Choi, Nam-Jung;Choi, Yun-Ho
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.74-84
    • /
    • 2007
  • The flowfield characteristics in a straight rectangular channel have been investigated through a numerical model to analyze the regenerative cooling system that is used in rocket engine cooling. The supercritical hydrogen coolant introduces strong property variations that have a major influence on the developing flow and heat transfer characteristics. Of particular interest is the improved understanding of the physical characteristics of such flows through parametric studies. The approach used is a numerical solution of the full Navier-Stokes equations in the three dimensional form including the arbitrary equation of state and property variations. The present study compares constant and variable property solutions for both laminar and turbulent flow. For laminar flow, the variation of aspect ratio is examined, while for turbulent flow, the effects of variation of channel length and Reynolds number are discussed.

Evaluation on the Characteristics of Liquefied Natural Gas as a Fuel of Liquid Rocket Engine

  • Namkoung, Hyuck-joon;Han, Poong-Gyoo;Kim, Kyoung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.148-154
    • /
    • 2004
  • As a rocket propellent of hydrocarbon fuels, the characteristics of liquefied natural gas was evaluated with the viewpoint of the constituents and content, the cooling performance as a coolant, and characteristic velocity and specific impulse as parameters of the engine performance. Content of methane was a principal factor to determine the characteristics as a rocket propellant and more than 90 % of it was needed as a fuel and coolant in the regenerative cooled liquid rocket engine. Some constituents of the liquefied natural gas can be frozen by the pre-cooling of the pipe lines, therefore they can be a factor disturbing the normal working of engine. In case the content of methane is around 90% in the liquefied natural gas, a normalized stoichiometric O/F mixture ratio of 0.75 is suggested for a nominal operation condition to get the maximum specific impulse and characteristic velocity.

  • PDF

Fabrication of Full-Scale Combustion Chamber of Liquid Rocket Engine for Ground Hot Firing Tests (실물형 고압 연소기의 연소시험 검증용 제작)

  • Kim Jonggyu;Seo Seonghyeon;Kim Seunghan;Han Yeoungmin;Ryu Chulsung;Seol Wooseok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.305-308
    • /
    • 2005
  • This paper presents a fabrication of a full-stale combustion chamber of a liquid rocket engine for a ground hot firing test. Engine drawings for manufacturing were prepared after conceptual and detail designs. The combustor is composed of a head and a chamber. SUS316L is used for materials of the head because of the good quality in low temperature. Inner materials of the ablative cooling chamber is silica/phenolic and outer case materials is the SUS316L. Materials of the regenerative cooling chamber are C18200 and SUS316L. After lathe, general milling and MCT machinings, components were finished by electrolytic polishing. A brazing method was applied for bonding the injectors and the injector plate, the regenerative cooling chamber because of structure configurations.

  • PDF