• Title/Summary/Keyword: Regenerative Turbomachinery

Search Result 4, Processing Time 0.016 seconds

Visualization of Flow inside a Regenerative Turbomachinery

  • Yang, Hyeonmo;Lee, Kyoung-Yong;Choi, Youngseok;Jeong, Kyungseok
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.2
    • /
    • pp.80-85
    • /
    • 2014
  • In this study, we visualized the internal flow of a regenerative turbomachinery using the direct injection tracer method. For visualization, the working fluid was water and the tracer was oil colors (marbling colors). Droplets were injected at the inlet of the machinery and the streak were recorded using a high-speed camera with high-power light sources. While circulating inside the groove, the droplets were translated by the rotational motion of the impeller. When the droplets flow out of the impeller groove, relative to the impeller, they moved more slowly. And the droplets repeatedly reentered into the groove and circulated again. Then the droplets either flowed to the outlet or to the stripper. As a result, this experiment has confirmed the internal circulating flow of a regenerative turbomachinery.

Development of An Integrated Optimal Design Program for Design of A High-Efficiency Low-Noise Regenerative Fan (재생형 송풍기의 고효율 저소음 설계를 위한 통합형 최적설계 프로그램 개발)

  • Heo, Man-Woong;Kim, Jin-Hyuk;Seo, Tae-Wan;Koo, Gyoung-Wan;Lee, Chung-Suk;Kim, Kwang-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • A multi-objective optimization of a regenerative fan for enhancing the aerodynamic and aeroacoustic performance was carried out using an integrated fan design system, namely, Total FAN-Regen$^{(R)}$. The Total FAN-Regen$^{(R)}$ was developed for non-specialists to carry out a series of design process, viz., computational preliminary design, three-dimensional aerodynamic and aeroacoustic analyses, and design optimization, for a regenerative fan. An aerodynamic analysis of the regenerative fan was conducted by solving three-dimensional Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. And, an aeroacoustic analysis of the regenerative fan was implemented in a finite/infinite element method by solving the variational formulation of Lighthill's analogy based on the results of the unsteady flow analysis. An optimum shape obtained by Total FAN-Regen$^{(R)}$ shows the enhanced efficiency and decreased sound pressure level as much as 1.5 % and 20.0 dB, respectively, compared to those of the reference design. The performance test was carried out for an optimized regenerative fan to validate the performance of the numerically predicted optimal design.

FLOW ANALYSIS AND PERFORMANCE EVALUATION OF HIGH PRESSURE DOUBLE STAGE RING BLOWER (고압 이단 링블로워의 삼차원 유동해석 및 성능평가)

  • Lee, K.D.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.45-48
    • /
    • 2007
  • In the present work, flow analysis has been performed for side channel type double stage ring blower by solving three-dimensional Reynolds-averaged Navier-Stokes equation. Shear stress transport model is used as turbulent closure. The commercial CFD code CFX 11.0 is used for the calculations. Each of two stage is calculated separately and the second stage inlet flow is same as the first stage outlet flow so that consecutive calculation is possible. Velocity and pressure fields have been analyzed at the midplane between blades. The numerical results are validated with experimental data for head coefficients at different flow coefficients.

  • PDF

FLOW ANALYSIS AND PERFORMANCE EVALUATION OF HIGH PRESSURE DOUBLE STAGE RING BLOWER (고압 이단 링블로워의 삼차원 유동해석 및 성능평가)

  • Lee, K.D.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.85-89
    • /
    • 2007
  • In the present work, flow analysis has been performed for side channel type double stage ring blower by solving three-dimensional Reynolds-averaged Navier-Stokes equation. Shear stress transport model is used as turbulent closure. The commercial CFD code CFX 11.0 is used for the calculations. Each of two stage is calculated separately and the second stage inlet flow is same as the first stage outlet flow so that consecutive calculation is possible. Velocity and pressure fields have been analyzed at the mid-plane between blades. The numerical results are validated with experimental data for head coefficients at different flow coefficients.