• Title/Summary/Keyword: Regenerative Power

Search Result 300, Processing Time 0.032 seconds

Development of Regenerative Braking Control Algorithm for a 4WD Hybrid Electric Vehicle (4WD HEV의 회생제동 제어로직 개발)

  • Yeo Hoon;Kim Donghyun;Kim Talchol;Kim Chulsoo;Hwang Sungho;Kim Hyunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.38-47
    • /
    • 2005
  • In this paper, a regenerative braking algorithm is proposed to make the maximum use of the regenerative braking energy for an independent front and rear motor drive parallel HEV. In the regenerative braking algorithm, the regenerative torque is determined by considering the motor capacity, motor efficiency, battery SOC, gear ratio, clutch state, engine speed and vehicle velocity. To implement the regenerative braking algorithm, HEV powertrain models including the internal combustion engine, electric motor, battery, manual transmission and the regenerative braking system are developed using MATLAB, and the regenerative braking performance is investigated by the simulator. Simulation results show that the proposed regenerative braking algorithm contributes to increasing the battery SOC, which recuperates 60 percent of the total braking energy while satisfying the design specification of the control logic. In addition, a control algorithm which limits the regenerative braking is suggested by considering the battery power capacity and dynamic response characteristics of the hydraulic control module.

Development of Regenerative Braking Control Algorithm for In-wheel Motor Type Fuel Cell Electric Vehicles Considering Vehicle Stability (차량 안정성을 고려한 인휠모터 방식 연료전지 전기자동차용 회생제동 알고리즘 개발)

  • Yang, D.H.;Park, J.H.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2010
  • In these days, the researches about hybrid and fuel cell electric vehicles are actively performed due to the environmental contamination and resource exhaust. Specially, the technology of regenerative braking, converting heat energy to electric energy, is one of the most effective technologies to improve fuel economy. This paper developed a regenerative braking control algorithm that is considered vehicle stability. The vehicle has a inline motor at front drive shaft and has a EHB(Electo-hydraulic Brake) system. The control logic and regenerative braking control algorithm are analyzed by MATLAB/Simulink. The vehicle model is carried out by CarSim and the driving simulation is performed by using co-simulation of CarSim and MATLAB/Simulink. From the simulation results, a regenerative braking control algorithm is verified to improve the vehicle stability as well as fuel economy.

  • PDF

The Effect of sGO Content in sPEEK/sGO Composite Membrane for Unitized Regenerative Fuel Cell (일체형 재생연료전지 적용을 위한 sGO 함량 변화에 따른 sGO/sPEEK 복합막의 특성 평가)

  • Jung, Ho-Young;Kim, Min-Woo;Lim, Ji-Hun;Choi, Jin H.;Roh, Sung-Hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.127-131
    • /
    • 2016
  • Polymer electrolyte membrane for unitized regenerative fuel cells requires high proton conductivity, high dimensional stability, low permeability, and low cost. However, DuPont's Nafion which is a commercial polymer electrolyte membrane has high permeability, high cost, and decreasing proton conductivity and dimensional stability over $80^{\circ}C$. To address these problems, sulfonated poly ether ether ketone (sPEEK) which is a low cost hydrocarbon polymer is selected as matrix polymer for the preparation of polymer electrolyte membrane. In addition, composite membrane with improved proton conductivity and dimensional stability is prepared by introducing sulfonated graphene oxide (sGO). The fundamental properties of polymer electrolyte membranes are analyzed by investigating membrane's water content, dimensional stability, proton conductivity, and morphology. The cell test is conducted to consider the possibility of application of sPEEK/sGO composite membrane for an unitized regenerative fuel cell.

Development of the 1kW Class Regenerative Fuel Cell for Ground Simulator of Regeneration Electric Power System (재생전원 시스템의 지상 시뮬레이터용 1kW급 재생형 연료전지 개발)

  • Kim, Hyung-Mo;Yang, Cheol-Nam;Hong, Byung-Sun;Park, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1117-1122
    • /
    • 2006
  • The PEM type regenerative fuel cell(RFC) for the ground simulator of the regeneration electric power system has been designed, manufactured, and tested. In this paper, the designing and manufacturing procedures of the RFC were presented. Also, the performance test results were showed briefly. The RFC consists of PEM type stack, humidifier, pressure and flow control valve, storage tanks, pump and controller. The performance tests were carried out with stack and system performance tests. The performance targets are more than 50% stack efficiency, 1.5kW stack power, less 400W parasitic power in design condition. Most of the performances required are satisfied.

The Regenerative Drive of Induction Servo Motor by the Flux Acceleration Method (자계벡터 가속법에 의한 유도형 서보전동기의 전력회생 구동)

  • Hong, Soon-Ill;Hong, Jeng-Pyo;Jung, Seoung-Hwan
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2006.06a
    • /
    • pp.77-80
    • /
    • 2006
  • This paper based on spiral vector, three phase induction motor is described a detailed modeling by a phase segment methode. Based on this model, A torque control and the equation of regenerative power for the induction motor drive, based on the field acceleration method(FAM), is presented. The speed control system is designed to be applied voltage source inverters that is easy the current type feedback of power regeneration for motor drive. The ability of shaving power to be measured power regeneration has been investigated in speed acceleration and reduction. And it is change of stator resistance that the voltage commands include error, the ripple of exited voltage and torque occur from the results. The experimental tests verify the performance of the proposed regenerative drive for FAM, proving that good behavior of the drive is achieved in the transient and steady-state operating conditions.

  • PDF

Development of Regeneration Invertor System for DC Electric Railway System (DC전철구간의 회생인버터시스템 개발)

  • Kim, Yong-Ki;Kim, Ju-Rak;Han, Moon-Seob;Kim, Jun-Gu;Yang, Young-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.505-511
    • /
    • 2008
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The purpose of this study was the development of the regenerative inverter system which suppress extra DC-line voltage and regenerate the energy instead of using a resister. That is Developed regenerative inverter system returns the regenerative energy from the DC line voltage to the utility. In addition, the inverter can be compensate the harmonics caused by the power conversion devices used in the DC traction system.

  • PDF

Predicting the Lifetime of Super-capacitor for DC Traction Regenerative Energy Storage System (직류철도 회생에너지 저장시스템용 슈퍼커패시터 수명예측)

  • Kim, Jong-Yoon;Park, Chan-Heung;Cho, Kee-Hyun;Jang, Su-Jin;Lee, Byoung-Kuk;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.212-214
    • /
    • 2007
  • Regenerative energy which is generated during brake periods of DC traction might cause malfunction or destruction of rectifier or any other power conversion devices caused the increment of DC line voltage. Regenerative energy storage system using super-capacitor is one of the method to control the DC line voltage safely. And super-capacitor is very important device as energy storage device. Therefore, In this paper, we designed the regenerative energy storage system using super-capacitor and propose the method about predicting the lifetime of super-capacitor established in storage system. According to the this research, we can estimate the proper replacement moment for the existed super-capacitor due to the safety of the system. And improve the reliability of regenerative energy storage system using super-capacitor.

  • PDF

A study of regenerative inverter system with capability of harmonic reduction (고조파 저감 능력을 가진 회생용 인버터 시스템 연구)

  • Choi, Chang-Youl;Bae, Chang-Hwan;Jang, Su-Jin;Song, Sang-Hun;Won, Cung-Yeun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.443-448
    • /
    • 2005
  • This paper proposed a regeneration inverter system, which can regenerate the excessive power form dc bus line to ac source for traction system. The proposed regeneration inverter system for dc traction can reduce harmonics which are include to ac current source. The regenerative inverter is operated as two modes. As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. In the paper, a regeneration inverter used PWM DC/AC converter algorithm. And an active power filter used p-q theory. The simulation was composed as a prototype model[3kW]. Simulation results show that two algorithm can be used to real model[100kW]. Finally, the inverter was successfully operated as regeneration mode.

  • PDF

Development Status of the Regeneration Inverter System for Energy Saving in DC Electric Railway (전철시스템의 에너지절약 회생인버터시스템 개발 현황)

  • Kim, Yong-Ki;Han, Moon-Seob;Yang, Young-Chul;Jang, Su-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1473-1478
    • /
    • 2007
  • In the respect of energy saving and reusing, it is necessary to reduce greenhouse gases emission and to enhance the operation efficiency in electric railway system. Recently, as the power electronics technologies are advanced, some countries have focused on the regenerative inverter to use regeneration energy on each line. When the electric tractions are stopped or slowed down, it is useful to supply the surplus energy to the power source by regenerative system, which increases its energy efficiency. Also, the generated energy can be supply to other tractions or equipments inside traction. Thus, it may help reduce construction cost of additional power plants. The purpose of this study is to describe the development status of the regenerative inverter system which suppress extra DC-line voltage and regenerate the energy instead of using a resister.

  • PDF

Electric railway vehicles using regenerative power and Improvement (전기철도차량 회생전력 활용 및 개선방안 - 서울도시철도 회생에너지 발생 및 활용을 중심으로 -)

  • Lee, Jun-Sang;Park, Jong-Hun;Kim, Jin-Young;Kim, Gi-Chun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.368-376
    • /
    • 2011
  • An Electric railway system has the characteristics. The train powered by substations generates regenerative power when it runs on railway of various slope. A regenerative braking is an ideal system on account of reducing mechanical braking as well as recycling the energy. This study dealt with the line gradient review, train running records and power data out of substations in a bid to establish the efficient regenerative energy storage system.

  • PDF