• Title/Summary/Keyword: Regeneration temperature

Search Result 328, Processing Time 0.024 seconds

Regeneration Processes of Nutrients in the Polar Front Area of the East Sea III. Distribution Patterns of Water Masses and Nutrients in the Middle-Northern last Sea of Korea in October, 1995 (동해 극전선역의 영양염류 순환 과정 III. 1995년 10월 동해 중부 및 북부 해역의 수괴와 영양염의 분포)

  • CHO Hyun-Jin;MOON Chang-Ho;YANG Han-Seob;KANG Won-Bae;LEE Kwang-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.393-407
    • /
    • 1997
  • A survey of biological and chemical characteristics in the middle-northern East Sea of Korea was carried out at 28 stations in October, 1995 on board R/V Tam-Yang. On the basis of the vertical profiles of temperature, salinity and dissolved oxygen, water masses in the study area were divided into 5 major groups; (1) Low Saline Surface Water (LSSW), (2) Tsushima Surface Water (TSW), (3) Tsushima Middle Water (TMW), (4) North Korean Cold Water (NKCW), (5) last Sea Porper Water (ESPW). Other 4 mixed water masses were also observed. It is highly possible that the LSSW which occured at depths of $0\~30m$ in the most southern part of the study area is originated from the Yangtze River (Kiang) of China due to very low salinity $(<32.0\%_{\circ})$ relatively high concentration of dissolved silicate and no sources of freshwater input into that area. Oxygen maximum layer in the vertical profile was located near surface at northern cold waters and became deeper at the warm southern area. Oxygen minimum layer af depths $50\~100m$, which is TMW, were found in only southern area. In the vortical profiles of nutrients, the concentrations were very low in the surface layer and increased drammatically near the thermocline. The highest concentration occurred in the ESPW. The relatively low value of Si/P ratio in the ESPW (13.63) compared to other reports in the East Sea was due to continuous increase of P with depth as well as Si. The N : P ratio was about 6.92, showing that nitrogenous nutrient is the limiting factor for phytoplankton growth. The exponential relationship between Si and P, compared to the linear relationship between N and P, indicates that nitrate and phosphate have approximately the same regenerative pattern, but silicate has delayed regenerative pattern.

  • PDF

A Study of Fluoride and Arsenic Adsorption from Aqueous Solution Using Alum Sludge Based Adsorbent (알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구)

  • Lee, Joon Hak;Ji, Won Hyun;Lee, Jin Soo;Park, Seong Sook;Choi, Kung Won;Kang, Chan Ung;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • An Alum-sludge based adsorbent (ASBA) was synthesized by the hydrothermal treatment of alum sludge obtained from settling basin in water treatment plant. ASBA was applied to remove fluoride and arsenic in artificially-contaminated aqueous solutions and mine drainage. The mineralogical crystal structure, composition, and specific surface area of ASBA were identified. The result revealed that ASBA has irregular pores and a specific surface area of 87.25 ㎡ g-1 on its surface, which is advantageous for quick and facile adsorption. The main mineral components of the adsorbent were found to be quartz(SiO2), montmorillonite((Al,Mg)2Si4O10(OH)2·4H2O) and albite(NaAlSi3O8). The effects of pH, reaction time, initial concentration, and temperature on removal of fluoride and arsenic were examined. The results of the experiments showed that, the adsorbed amount of fluoride and arsenic gradually decreased with increasing pH. Based on the results of kinetic and isotherm experiments, the maximum adsorption capacity of fluoride and arsenic were 7.6 and 5.6 mg g-1, respectively. Developed models of fluoride and arsenic were suitable for the Langmuir and Freundlich models. Moreover, As for fluoride and arsenic, the increase rate of adsorption concentration decreased after 8 and 12 hr, respectively, after the start of the reaction. Also, the thermodynamic data showed that the amount of fluoride and arsenic adsorbed onto ASBA increased with increasing temperature from 25℃ to 35℃, indicating that the adsorption was endothermic and non-spontaneous reaction. As a result of regeneration experiments, ASBA can be regenerated by 1N of NaOH. In the actual mine drainage experiment, it was found that it has relatively high removal rates of 77% and 69%. The experimental results show ASBA is effective as an adsorbent for removal fluoride and arsenic from mine drainage, which has a small flow rate and acid/neutral pH environment.

Utilizing the Idle Railway Sites: A Proposal for the Location of Solar Power Plants Using Cluster Analysis (철도 유휴부지 활용방안: 군집분석을 활용한 태양광발전 입지 제안)

  • Eunkyung Kang;Seonuk Yang;Jiyoon Kwon;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.79-105
    • /
    • 2023
  • Due to unprecedented extreme weather events such as global warming and climate change, many parts of the world suffer from severe pain, and economic losses are also snowballing. In order to address these problems, 'The Paris Agreement' was signed in 2016, and an intergovernmental consultative body was formed to keep the average temperature rise of the Earth below 1.5℃. Korea also declared 'Carbon Neutrality in 2050' to prevent climate catastrophe. In particular, it was found that the increase in temperature caused by greenhouse gas emissions hurts the environment and society as a whole, as well as the export-dependent economy of Korea. In addition, as the diversification of transportation types is accelerating, the change in means of choice is also increasing. As the development paradigm in the low-growth era changes to urban regeneration, interest in idle railway sites is rising due to reduced demand for routes, improvement of alignment, and relocation of urban railways. Meanwhile, it is possible to partially achieve the solar power generation goal of 'Renewable Energy 3020' by utilizing already developed but idle railway sites and take advantage of being free from environmental damage and resident acceptance issues surrounding the location; but the actual use and plan for these solar power facilities are still lacking. Therefore, in this study, using the big data provided by the Korea National Railway and the Renewable Energy Cloud Platform, we develop an algorithm to discover and analyze suitable idle sites where solar power generation facilities can be installed and identify potentially applicable areas considering conditions desired by users. By searching and deriving these idle but relevant sites, it is intended to devise a plan to save enormous costs for facilities or expansion in the early stages of development. This study uses various cluster analyses to develop an optimal algorithm that can derive solar power plant locations on idle railway sites and, as a result, suggests 202 'actively recommended areas.' These results would help decision-makers make rational decisions from the viewpoint of simultaneously considering the economy and the environment.

Immobilization of Xylose Isomerase and Trial Production of High Fructose Corn Syrup (Xylose 이성화 효소의 고정화 및 이성화당의 생산)

  • Chun, Moon-Jin;Lim, Bun-Sam
    • Applied Biological Chemistry
    • /
    • v.26 no.4
    • /
    • pp.222-230
    • /
    • 1983
  • This study was designed to develop a process for the immobilization of xylose isomerase(D-xylose ketol isomerase, EC 5.3.1.5) from Streptomyces griseolus previously isolated by the authors and its application on a pilot plant scale for the production of high fructose corn syrup. The biomass which has endo-excreted xylose isomerase was homogenized under a pressure of $500kg/cm^2$ and 90.8% of the enzyme recovery of the native activity was obtained as compared to 54.7% recovery by the lysozyme treatment. Ionic bonding method was adopted for the enzyme immobilization due to its many reported merits. It was found that the porous resins such as Diaion HP 20, Duolite A-7, Amberlite IRA 93 and 94 were effective in immobilizing the enzyme. In addition, it was disclosed that the regeneration form of $BO_4--$ is effective for Amberlite IRA 93 and $HCO_3-$ for Diaion HP 20. Optimal immobilization condition for Amberlite IRA 93 was pH 8.0 and $55^{\circ}C$ yielding 80.6% of immobilization. Activity decay test showed half life of the immobilized enzyme with Amberlite IRA 93 was more than 24 days at $65^{\circ}C$. The carrier was evaluated to be resuable and its result showed the relative immobilization yields were 98.2, 93.3, 90.7 and 87.5%, respectively at second, third, forth and fifth rebinding test of the enzyme on Amberlite IRA 93. Optimal temperature of the immobilized enzyme was slightly lowered and the range widened to $60\sim70^{\circ}C$, while optimal pH moved toward $8.0\sim8.3$ in its isomerization reaction. The trial production result of high fructose corn syrup in pilot scale immobilization showed that one liter of immobilized xylose isomerase (350 IXIU/ml-R) is capable producing about 293l high fructose corn syrup(75% dry substance) in 30 days.

  • PDF

Characteristics of $CO_{2}$ Absorption and Degradation of Aqueous Alkanolamine Solutions in $CO_{2}$ and $CO_{2}-O_{2}$ System ($CO_{2}$$CO_{2}-O_{2}$ 시스템에서 알카놀아민류 흡수제를 이용한 $CO_{2}$ 흡수 및 흡수제 열화 특성)

  • Choi, Won-Joon;Lee, Jong-Seop;Han, Keun-Hee;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.256-262
    • /
    • 2011
  • Amine can undergo irreversible reactions by $O_{2}$ and high temperature in amine scrubbing process and these phenomena are called "degradation". Degradation causes not only a loss of valuable amine, but also operational problems such as foaming, corrosion and fouling. In this study, using various chemical absorbents(MEA; monoethanolamine, AMP; 2-amino-2-methyl-1-propanol, DAM; 1,8-diamino-p-menthane), we examined the following variable. I) loading ratio of $CO_{2}$ at $50^{\circ}C$ and $120^{\circ}C$, ii) concentration variation and initial degradation rate constant of absorbent in $CO_{2}$ and $CO_{2}/O_{2}$ system, and iii) effect of degradation by $O_{2}$. The $CO_{2}$ loading of 20 wt% DAM was 400% and 270% higher than that of 20 wt% MEA and AMP at 50, respectively and was the largest the difference of $CO_{2}$ loading between absorption $(50^{\circ}C)$ and regeneration $(120^{\circ}C)$ condition. The initial degradation rate constant of 20 wt% DAM was $2.254{\times}10^{-4}cycle^{-1}$ which was slower than that of MEA $(2.761{\times}10^{-4}cycle^{-1})$ and AMP $(2.461{\times}10^{-4}cycle^{-1})$ in $CO_{2}$ system. Also, it was increased 30% by $O_{2}$ that effects on the degradation by $O_{2}$ was less than 100% increased. these degradation reactions was able to identify by formation of new peak in GC and FT-IR spectrum analysis.

The Effect of HCl Gas on Selective Catalytic Reduction of Nitrogen Oxide (질소산화물의 선택적 환원 제거시 염화수소기체가 촉매에 미치는 영향)

  • Choung, Jin-Woo;Choi, Kwang-Ho;Seong, Hee-Je;Chai, Ho-Jung;Nam, In-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.609-617
    • /
    • 2000
  • This study is aimed at investigating an effect of HCl gas on selective reduction of NOx over a CuHM and $V_2O_5-WO_3/TiO_2$ catalyst. SCR process is the most effective method to remove NOx, but catalyst can be deactivated by the acidic gas such as HCl gas which is also included in flue gas from the incinerator. In dry condition of flue gas, the CuHM catalyst treated by HCl gas has shown higher NO removal activity than the fresh catalyst. The activity of the catalyst can be restored by treating at $500^{\circ}C$. On the contrary. $V_2O_5-WO_3/TiO_2$ catalyst is obviously deactivated by HCl and the deactivation increases in proportion to the concentration of HCl gas. The deactivated catalyst is not restored to it's original activity by heat treatment for regeneration. In wet flue gas stream, the CuHM catalyst has shown lower activity than fresh catalyst and $V_2O_5-WO_3/TiO_2$ catalyst was severely deactivated by HCl treatment. The activity loss of catalysts are mainly due to the decrease of Br$\ddot{o}$nsted acid site on the catalyst surface by $NH_3$ TPD. The change of BET surface area of CuHM catalyst after the reaction isn't observed but $V_2O_5-WO_3/TiO_2$ catalyst is observed. The amount of $Cu^{{+}{+}}$ and $V_2O_5$ is decreased after the reaction. From these results, it is expected that CuHM catalyst should be better than $V_2O_5-WO_3/TiO_2$ catalyst for its application to the incineration of flue gas.

  • PDF

Propagation Efficiencies at Different LED Light Qualities for Leaf Cutting of Six Echeveria Cultivars in a Plant Factory System (에케베리아 6품종의 엽삽 시 식물공장시스템 내 LED 파장에 따른 번식 효율)

  • Kim, Seongmin;Kim, Jiseon;Oh, Wook
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.363-370
    • /
    • 2018
  • The succulent plants of Echeveria genus are in increasing demand worldwide, but it is difficult to supply good quality young plants throughout the year because propagation efficiencies are depend on cultivar and environmental factors. This study was carried out to investigate the propagation efficiencies of leaf cutting in Echeveria cultivars at different LED light qualities in a closed-type plant factory system. Leaf cuttings cut from stock plants of six difficult-to-propagated cultivars 'Afterglow (AG)', 'Berkeley Light (BL)', 'Mason (MS)', 'Subsessilis Light (SL)', 'Cream Tea (CT)', and 'Ben Badis (BB)' were put into cutting media in the plant factory system maintained at a temperature of $24{\pm}2^{\circ}C$ and relative humidity of $60{\pm}10%$, and watered with over-head irrigation twice a week. Cuttings were irradiated with sole or mixed red (R, 660 nm), blue (B, 450 nm), green (G, 530 nm), and far-red (FR, 730 nm) LEDs as follows: R10, R8+B2, R5+B5, R7+B2+FR1, and R7+B2+G1. PPFD just above the cuttings was $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and photoperiod was 16/8 (light/dark) hours. As a result, propagation efficiencies were dependent on cultivar. Rooting and shooting were relatively easy in 'SL' but shoot formation in 'AG' was very difficult. Light qualities from LEDs also affected plant regeneration. Light conditions with a higher ratio of B, R5+B5, R7+B2+FR1, and R7+B2+G1, promoted shoot formation and growth but inhibited rooting and root growth. R10 and R8+B2 with a higher ratio of R promoted rooting and root growth and inhibited shoot formation and growth of cuttings. In addition, the treatment with FR increased leaf size and biomass of the all plants. Therefore, further studies are needed to investigate the optimum compositions of LED light quality for the improvement of leaf cutting efficiency in difficultto-propagated Echeveria cultivars.

Adventitious Shoot and Plant Regeneration from Anther Culture of Hypericum ascyron L. (물레나물 약배양에 의한 부정 신초 및 식물체 재분화)

  • Ko, Jeong-Ae;Kim, Hyun-Soon;Kim, Hyung-Moo
    • Korean Journal of Plant Resources
    • /
    • v.21 no.5
    • /
    • pp.368-373
    • /
    • 2008
  • In order to investigate the effects of low temperature pretreatment of floral bud and plant growth regulators on anther-derived callus and shoot differentiation, anthers were cultured on 1/2 MS medium supplemented with 2,4-D, NAA, BA and TDZ. This plant depends on the plant growth regulators, for these anthers couldn't respond on 1/2 MS medium without plant growth regulators. 2,4-D was a prerequisite substance in this experiment, especially 52.6% of callus formation on MS medium with 2.0mg/L 2,4-D alone. However, the optimum medium was on 1/2 MS medium with 0.1 mg/L 2,4-D and 1.0mg/L BA for continuous growth and shoot differentiation from the anther. Calli derived from on MS medium with 2.0mg/L 2,4-D transferred to the 1/2MS medium with TDZ and BA. TDZ were less superior to BA, only one anther could produce shoot on MS media with 1.0mg/L TDZ. On the other hand, when the calli transferred to the medium with 3.0mg/L BA, adventitious shoots were proliferated, subsequently, regenerated shoots elongated from the embryogenic calli. After floral buds of one week before anthesis were incubated at $5^{\circ}C$ refrigerator for eight or fifteen days, anthers seperated from floral buds were cultured on 1/2MS medium supplemented with 0.1mg/L 2,4-D and 1.0mg/L BA. Callusing and shoot differentiation on anthers from treated at $5^{\circ}C$ for eight days were more effective than those of fifteen days or control.