• Title/Summary/Keyword: Regenerated cellulosic fiber

Search Result 6, Processing Time 0.018 seconds

Dyeing Properties of Bi-functional Reactive Dyes on a Novel Regenerated Cellulosic Fiber

  • Koh, Joonseok;Kim, Ik Soo;Kim, Sung Soo;Shim, Woo Sub;Kim, Jae Pil
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.44-51
    • /
    • 2004
  • Three bi-functional reactive dyes such as Bis(vinylsulphone) type, Bis(monochlorotriazine) type and Bis(mononicotinotriazine) type were applied to regular viscose rayon and new regenerated cellulosic fiber ($enVix^ⓡ$) which was prepared from cellulose acetate fiber by the hydrolysis of acetyl groups, and their dyeing properties and fastness properties were compared. enVix exhibited better dyeability and fastness than regular viscose rayon and these results were also explained by the differences in the supramolecular structure of these two fibers.

Dyeing and Fastness Properties of Vat Dyes on a Novel Regenerated Cellulosic Fiber

  • Lee Jung Jin;Shim Woo Sub;Kim Ik Soo;Kim Jae PH
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.244-249
    • /
    • 2005
  • enVix is a novel regenerated cellulosic fiber, which is prepared from cellulose diacetate fiber using environmentally friendly manufacturing process. Vat dyeing properties of the enVix were investigated and compared with those ofregular viscose rayon. The enVix exhibited better dyeability than viscose rayon. The colour yields of vat dyes on the enVix were found to be dependent on dyeing temperature as well as the amount of levelling agent and salt. Good build-up and good to excellent fastness properties were obtained on the en Vix fabric.

Printing Properties of Novel Regenerated Cellulosic Fibers

  • Kim, Ik-Soo;Koh, Joon-Seok;Han, Nam-Keun;Kim, Jae-Pil
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.219-224
    • /
    • 2004
  • The reactive printing properties of regular viscose rayon and a new regenerated cellulosic fiber (en Vix^{\textregistered}$) which was prepared from cellulose acetate fiber was investigated in a comparative manner. From the results, it was found that en Vix exhibited better printing properties than regular viscose rayon. It showed stable final color yields, irrespective of the amount of thickener, hence reproducibility of printing of en Vix is expected to be excellent. In addition, urea requirements were less for the printings on en Vix than for the corresponding printing on viscose rayon. Therefore, en Vix is also expected to reduce the amount of the urea which causes environmental problems in dyehouse effluent.

High Tenacity Cellulosic Fiber from Liquid Crystal Solution of Cellulose Triacetate (셀룰로오스 트리아세테이트 액정용액으로 부터 고강도 셀룰로오스 섬유 제조에 관한 연구)

  • 홍영근
    • Textile Coloration and Finishing
    • /
    • v.6 no.1
    • /
    • pp.44-48
    • /
    • 1994
  • Cellulose triacetate(CTA) liquid crystal solutions obtained via dissolution of CTA in solvent mixture of triflucroacetic acid and methylene chloride were spun and saponified in various chemicals. Among chemicals, methanol/sodium hydroxide mixture endowed highest tenacity as well as modulus to regenerated cellulosic fiber and the fiber thereof showed Cell I or Cell IV morphology, or mixed morphology of Cell I and IV.

  • PDF

The Structural Change and Hand of Cellulosic Fiber treated with N-methylmorpholine-N-oxide (N-Methylmorpholine-N-Oxide 처리에 의한 셀룰로오스 직물의 구조변화와 태분석)

  • 조규민;강건우;임용진;김미경;김태경;이혜정
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.43-50
    • /
    • 2003
  • N-methylmorpholine-N-oxide(NMMO) is recently hewn as a solvent dissolving cellulose to produce a new regenerated cellulosic fiber, lyocell. In this study, four kinds of cellulosic fibers (lyocell, regular cotton, treated cotton with 50% and 75% NMMO aqueous solution) was examined and compared in terms of mechanical properties and dyeability. The swelling of cotton treated with NMMO aqueous solution is higher than that of cotton treated with water. In dyeing rate, the cotton treated with NMMO was faster than regular cotton. NMMO treatment decreased the crystallinity of cotton fabrics and improved their softness and smoothness.

Physical Property and Virtual Sewing Image of Lyocell treated with Epichlorohydrine for the fibrillation control

  • Park, Ji-Yang;Jeon, Dong-Won;Kim, Sin-Hee
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.46-60
    • /
    • 2008
  • Lyocell is a regenerated cellulosic fiber manufactured by an environmentally friendly process. The major advantages of lyocell are the excellent drape forming property, the genuine bulkiness, smooth surface, and high dry/wet tenacities. However, one drawback of lyocell is its fibrillation property, which would degrade its aesthetic quality and lower the consumer satisfaction. In our previous studies, lyocell was treated with epichlorohydrin, a non-formalin based crosslinker, to reduce its fibrillation tendency. To investigate the changes of physical properties upon ECH-treatment, the hand characteristics of ECH-treated fabric were observed using KES-FB system and the 3D-virtual sewing image of the fabrics were obtained using 3D CAD simulation system in this study. Since epichlorohydrin(ECH) treatment was conducted in the alkaline medium, the weight reduction was observed in all treated lyocell. The treated lyocell became light, smooth and flexible in spite of ECH crosslinker application. LT and RT in tensile property upon the ECH treatment did not change significantly, however, EMT and WT in the tensile property increased. The significant decrease in bending rigidity was resulted in all ECH-treated lyocell, which is the result of the weight loss upon the alkali condition of ECH treatment. The bending rigidity increased again in the ECH 30% treated lyocell, however, the B value is still lower than the original. Therefore, the ECH-treated lyocell would be more stretchable and softer than the original. Shear rigidity was also decreased in all ECH-treated lyocell, which would result in more drape and body fitting when it is made as a garment. The ECH-treated fabric showed the softer smoother surface according to SMD value from KES evaluation. The virtual 3D sewing image of the ECH-treated lyocell did not show a significant change from that of the original except ECH 30% treated lyocell. ECH 30% treated lyocell showed a stiffer and more puckered image than the original.