• Title/Summary/Keyword: Refroming

Search Result 2, Processing Time 0.015 seconds

PROCESS OPTIMIZATION OF METHANE REFORMING IN ARC JET (아크젯 플라즈마에서의 메탄개질의 최적화)

  • Hwang, Na-Kyung;Lee, Dae-Hoon;Song, Young-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.266-271
    • /
    • 2006
  • Characteristic of partial oxidation of methane using arc-jet plasma by AC power is investigated. Arc-jet reactor used in this work is slightly modified from typical arc jet reactor so that it can make and sustain stable state of plasma. Methane conversion, selectivity of chemicals such as hydrogen and hydrocarbon materials in the product are analyzed. Parametric approach on the performance of the reactor or detail on the partial oxidation process is carried with $O_2/C$ ratio as parameter. In addition to the results, SED and arc length is changed to understand the effect of current-voltage correlation on the reforming performance and relative role of thermal process.

  • PDF

Plasma Reformer for Low NOx Combustion (저 NOx 연소를 위한 플라즈마 개질기)

  • Kim, Kwan-Tae;Lee, Dae-Hoon;Cha, Min-Suk;Keel, Sang-In;Yoon, Jin-Han;Song, Young-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.187-190
    • /
    • 2007
  • A combined hydrogen generator of plasma and catalytic reformers has been developed, and has been applied to stabilize unstable flame of 200,000 Kcal/hr LPG combustor. The role of the plasma reformer is to generate hydrogen in a short period and to heat-up the catalytic reformer during the start-up time. After the start-up period, the catalytic reformer generates hydrogen through steam reforming with oxygen (SRO) reactions. The maximum capacity of the hydrogen generator is 100 lpm that is sufficient to be used to stabilize the flame of the present combustor. In order to reduce NOx and CO emissions simultaneously, 1) FGR (Flue Gas Recirculation) technique has been adopted and 2) the hydrogen has been added into the fuel supplied to the combustor. Test results shows that 25 % addition of hydrogen and 30 % FGR rate lead to simultaneous decrease of CO and NOx emissions. The technique proposed in the present study shows good potential to replace $NH_3$ SCR technique, especially in the case of small-scale combustor applications.

  • PDF