• 제목/요약/키워드: Refrigerator cycle

검색결과 98건 처리시간 0.028초

압축기소음과 냉장고소음의 관계 규명 (압축기 정음화에 의한 냉장고 정음화) (The search for relations betwwen compressor noise and refrigerator noise)

  • 유원희;백충국;송진환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.32-36
    • /
    • 1996
  • Noise radiated from refrigerator is mainly decided by compressor noise. If the compressor is silent then the refrigerator could be silent. But In some case this tendency is not true. Because there is uncertain relations between compressor noise and refrigerator noise. And the refrigerator noise is affected by the cycle-matching in the refrigerating system using compressor. In this research it was studied that the compressor noise which didn't affect some refrigerator models could affect other refrigerator models. The methods which could reduce the refrigerator noise was studied and ultimately the methods which could change the characteristics of compressor noise was presented.

  • PDF

가정용 전기냉장고의 냉동사이클 전산해석(I) (Numerical Prediction of the Performance of Refrigeration Cycle in a Domestic Refrigerator/Freezer(I))

  • 한인철;박진구
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.277-288
    • /
    • 1992
  • Numerical simulations are made of the refrigeration cycle in a domestic refrigerator/freezer. The main purpose of the present study is to predict the steady-state cycle performance with various specifications of cycle components and cabinet under the continuous running conditions. The detailed mathematical models are constructed for both the cycle components and cabinet, which are strongly coupled with each other. The simultaneous equations are solved by simple iteration method, and the results obtained are examined to assess the effect of the cycle components and cabinet modification on the system performance.

  • PDF

연소기 후치 가스터빈에 관한 열역학적 연구 (A Thermodynamic Study on Exhaust Heated Gas Turbine Cycle)

  • 박종구;오수철;양옥룡
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.18-28
    • /
    • 1994
  • An exhaust-heated gas turbine cycle equipped with a waste heat recovery boiler and ammonia absorption-type refrigerator using waste heat is newly devised and analyzed. The general performance of this cycle is compared with that of the conventional gas turbine cycle. This cycle shows a potential high efficiency. When 1500K of gas turbine inlet temperature the efficiency is 53 percent as compared to 45 percent for a conventional combined cycle. Suction cooling of this cycle leads to improve the thermal efficiency and the specific output.

  • PDF

공진특성을 고려한 냉동/공조용 횡자속 선형압축기의 설계 (The Design of a Linear Compressor Based on the Resonance Characteristics for the Air Conditioner)

  • 홍용주;박성제;김효봉
    • 연구논문집
    • /
    • 통권34호
    • /
    • pp.39-46
    • /
    • 2004
  • The compressors in the air conditioner have the role of the pressurization and circulation of the refrigerant. The hermetic reciprocating compressors driven by rotary motor have been used for the air conditioner. The linear compressor has very simple structure and enhancement in the efficiency in comparison to that of conventional reciprocating compressor. The linear compressors are widely used for the small cryogenic refrigerator (below 1 kW), such as the Stirling refrigerator and pulse tube refrigerator. In the cryogenic application, the pressure ratio of the linear compressor is below 1.5, but the linear compressor for the air conditioner should overcome the high pressure ratio and the large pressure difference between the each sides of the piston. The resonance characteristics of the linear compressor has the significant impacts on the power consumption. To minimize the power consumption, the linear compressor should be operated at the resonance point. In the resonance characteristics, the role of the mechanical and gas spring should be considered. In present study, the cycle of the analysis of the vapor compression refrigeration cycle with the different refrigerants (R134a, R4l0a, R600a) and the designs of the linear compressor are performed. The effects of the stiffness of the mechanical spring on the electromagnetic forces would be discussed. Finally, the results show the design specification of the linear compressor for the air conditioner.

  • PDF

Selection of working fluid for cryosurgical probe considering biological heat transfer

  • Hwang, Gyu-Wan;Jeong, Sang-Kwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권4호
    • /
    • pp.46-49
    • /
    • 2007
  • This paper describes the sensitive cooling performance change of J-T refrigerator for cryosurgical probe due to its working fluid. The analytical results of using 50 bar nitrous oxide are compared with the case of 300 bar argon. Bio-heat equation is numerically solved to investigate the effect of the probe temperature and the cooling power of the J-T refrigerator. The refrigerator using 50 bar nitrous oxide has larger cooling power above 185 K than the one with 300 bar argon, which enables fast cooling at early stage of cryosurgery, but the biological tissue away from the probe tends to be cooled slowly after the probe reaches its lowest operating temperature. When the repeated freeze-thaw cycle is employed for main tissue destruction mechanism, using high pressure nitrous oxide is more advantageous than argon if the freezing operation is within 2-3 minutes. The probe with high pressure argon is more suitable for the case of longer freeze-thaw cycle with fewer repetitions.

Basic Design of Hydrogen Liquefier Precooled by Cryogenic Refrigerator

  • Kim, Seung-Hyun;Chang, Ho-Myung;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.124-135
    • /
    • 1998
  • A thermodynamic cycle analysis is performed for refrigerator-precooled Linde-Hampson hydrogen liquefiers, including catalysts for the ortho-to-para conversion. Three different configurations of the liquefying system, depending upon the method of the o-p conversion, are selected for the analysis. After some simplifying and justifiable assumptions are made, a general analysis program to predict the liquid yield and the figure of merit (FOM) is developed with incorporating the commercial computer code for the thermodynamic properties of hydrogen. The discussion is focused on the effect of the two primary design parameters - the precooling temperature and the high pressure of the cycle. When the precooling temperature is in a range between 45 and 60 K, the optimal high pressure for the maximal liquid yield is found to be about 100 to 140 bar, regardless of the ortho-to-para conversion. However, the FOM can be maximized at slightly lower high pressures, 75 to 130 bar. It is concluded that the good performance of the precooling refrigerator is significant in the liquefiers, because at low precooling temperatures high values of the liquid yield and the FOM can be achieved without compression of gas to a very high pressure.

  • PDF

맥동관 냉동기 열교환기에 관한 실험적 연구 (An Experimental Study on the Heat Exchangers in the Pulse Tube Refrigerator)

  • 남관우;정상권;정은수
    • 설비공학논문집
    • /
    • 제12권3호
    • /
    • pp.284-291
    • /
    • 2000
  • A basic pulse tube refrigerator has been constructed with extensive instrumentation to study the characteristics of the heat exchanger experimentally under the oscillating pressure and the oscillating flow. This paper describes the sequential experiments with the basic pulse tube refrigerator. The experiments were performed for various cycle frequencies under the square pressure wave forms. First, the heat flux was measured through the cycle at the both cold and warm end heat exchangers without the regenerator. In order to enhance the thermal communication capability of the heat exchanger with the gas at low operating frequencies, a unique design of the triangular shape radial fin concept was applied to the heat exchangers. For the fin heat exchanger, the measured heat flux and the calculated heat flux from the two well-known oscillating heat transfer correlations were compared and discussed. Second, the regenerator was added to the pulse tube to make a basic pulse tube refrigerator configuration. The experiment showed the great impact of the regenerator on the temperature and the heat flux profiles. At the warm-end, the cyclic averaged heat flux had its maximum value at the specific operating frequency. The paper presents the explanation of the surface heat pumping effect as well as the experimental data.

  • PDF

Review on innovative small refrigeration methods for sub-Kelvin cooling

  • Dohoon, Kwon;Junhyuk, Bae;Sangkwon, Jeong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권4호
    • /
    • pp.71-77
    • /
    • 2022
  • Sub-Kelvin cooling has been generally demanded for the fields of low temperature physics, such as physical property measurements, astronomical detection, and quantum computing. The refrigeration system with a small size can be appropriately introduced when the measurement system does not require a high cooling capacity at sub-Kelvin temperature. The dilution refrigerator which is a common method to reach sub-Kelvin, however, must possess a large 3He circulation equipment at room temperature. As alternatives, a sorption refrigerator and a magnetic refrigerator can be adopted for sub-Kelvin cooling. This paper describes those coolers which have been developed by various research groups. Furthermore, a cold-cycle dilution refrigerator of which the size of the 3He circulation system is minimized, is also introduced. Subsequently, a new concept of dilution refrigerator is proposed by our group. The suggested cooler can achieve sub-Kelvin temperature with a small size since it does not require any recuperator and turbo-molecular vacuum pump. Its architecture allows the compact configuration to reach sub-Kelvin temperature by integrating the sorption pump and the magnetic refrigerators. Therefore, it may be suitably utilized in the low temperature experiments requiring low cooling capacity.

신흡수용액을 이용한 중온수 흡수식 냉동기의 사이클 해석 (Cycle Analysis of Hot Water Driven Absorption Refrigerator with New Working Absorption Solution)

  • 권오경;윤재호;문춘근;윤정인
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1241-1248
    • /
    • 2002
  • Performance extension of the absorption refrigerator with LiBr solution is often faced to operate very close to the crystallization limit. Especially in the development of an air-cooled cycle, the crystallization of working solution in the system is a very difficult problem to overcome. This paper describes the cycle of hot water driven absorption system using a new working absorption solution instead of LiBr solution to improve the efficiency. In this study, we found out the characteristics of new working absorption solution through the cycle simulation and compared LiBr solution to evaluate. The effect of cooling water temperature, weak solution flow rate, hot water temperature and hot water flow rate were also examined. The COP is increased 22% higher in the case of LiBr+Li1+LiC1+LiNO$_3$$H_2O$, 2% LiBr+HO(CH$_2$)$_3$OH+$H_2O$ than that of LiBr solution for the same operation condition.