• Title/Summary/Keyword: Refrigeration Systems

Search Result 500, Processing Time 0.026 seconds

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

The Effect on Fouling Reduction by the Ball Cleaning System in a Compressed Type Refrigerator

  • Lee, Yoon-Pyo;Karng, Sarng-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.2
    • /
    • pp.88-96
    • /
    • 2002
  • The present study was conducted to estimate the effect on fouling reduction in tubes of the condenser. It shows in detail how to calculate the fouling factor from the experimental results of refrigeration systems with or without the automatic cleaning system using sponge balls and to predict the variation of the factor with time. It also represents how to calculate the temperature and pressure decrease of the refrigerant vapor in the condenser and the load decrease of the compressor in the refrigeration system by fouling reduction.

Characteristics of Hydrocarbon Refrigerants on Evaporating Heat Transfer and Pressure Drop

  • Lee Ho-Saeng;Phan Thanh Tong;Yoon Jung-In
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.3
    • /
    • pp.102-109
    • /
    • 2006
  • Experimental results for heat transfer characteristics and pressure gradients of HCs refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 during evaporating inside horizontal double pipe heat exchangers are presented. The test sections which has one tube diameter of 12.70 mm with 0.89 mm wall thickness, another tube diameter of 9.52 mm with 0.76 mm wall thickness are used for this investigation. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were higher than that of R-22. The average evaporating heat transfer coefficient increased with the increase of the mass flux, with the higher values in hydrocarbon refrigerants than R-22. Hydrocarbon refrigerants have higher pressure drop than R-22. Those results from the investigation can be used in the design of heat exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

Optimal Design Condition of Refrigeration Cycle with Heat Transfer Processes (열전달을 고려한 냉동 사이클의 최적 설계조건)

  • 김수연;정평석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.225-229
    • /
    • 1990
  • As a basic study of optimal design conditions of refrigeration systems, the reversed carnot cycle, including heat transfer processes through the finite temperature differences between heat sources and the working fluids, is analyzed with the capacity of heat exchanger as a design parameter. When the temperatures of heat sources and the input work are fixed as constants, the optimal design condition is obtained as an optimum ratio of capacities of heat exchangers, which is exactly unity when the exergy output and effectiveness are maximum. In addition, the optimum ratio is slightly increased from unity as the irreversibility of the cycle increases.

Development of Temperature control system for kimchi-refrigerator using fuzzy logic

  • Jung, Kwang Sik;No, Young Iun;Lim, Young Chel;Ryoo, Young Jae;Ahn, Min Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.111.2-111
    • /
    • 2002
  • The temperature of Kimchi-refrigerator is controlled by the wishing condition the original taste of Kimchi, the fast precocity of Kimchi. In this paper we studied the controlling temperature of Kimchi-refrigerator. The controlling temperature of Kimchi refrigerator is based on microcontroller which control On/Off. In this paper, Fuzzy logic was used to control the temperature of Kimchi-refrigeration. I will apply to fuzzy logic control to have simple rule control on the place of On-Off control system in the past. This device controls the in order to measure several temperature of two refrigeration plant in Kimchi refrigerator solenoid valve in refrigeration plant. A solenoid valve...

  • PDF

The Study on Performance Characteristics in Freon Refrigeration System using Shell and Disk Type Heat Exchanger (셸앤디스크형 열교환기를 적용한 프레온 냉동장치의 성능특성 연구)

  • Kim, Yang-Hyun;Park, Chan-Soo;Lee, Seong-Jae;Kim, Jin-Hyun;Ha, Ok-Nam
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.579-584
    • /
    • 2005
  • Nowadays heat exchangers that have been applied for freon refrigerating systems, a shell and tube type condenser and a flooded evaporator have been used, but because of their large size, large space for installation and amount of refrigerants are needed. In this study, we will find the most suitable operating condition of shell and disk type optimum heat exchanger which can minimize the amount of a refrigerant and allow its minimum leakage. The condensing pressure of refrigeration system is increased from 15.0bar to 16.0bar and degree of superheat is increased from 0 to $10^{\circ}C$ at each condensing pressure. As a result of study, It revealed that shell and disk type heat exchanger was applicable to the freon refrigeration system

  • PDF

The Effect on Fouling Reduction by the Cleaning System in Compressed Type Refrigerator (압축식 냉동기에서 세정장치에 의한 파울링 억제효과)

  • 이윤표;강상우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.482-489
    • /
    • 2001
  • The present study was conducted to estimate the effect on fouling reduction in tubes of the condenser. It shows in detail how to calculate the fouling factor from the experimental results of refrigeration systems with or without the automatic cleaning system using sponge balls and to predict the variation of the factor with time. It also represents how to calculate the temperature and pressure decrease of the refrigerant vapor in the condenser and the load decrease of the compressor in the refrigeration system by fouling reduction.

  • PDF

Evaporator Superheat Control of a Multi-type Air-conditioning/Refrigeration System (멀티형 공조/냉동시스템의 증발기 과열도 제어)

  • Kim, Tae-Sub;Hong, Keum-Shik;Sohn, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.712-717
    • /
    • 2001
  • This paper investigates the control problem of evaporator superheat, i.e., the difference between the temperature of the refrigerant at the entrance region of an evaporator and that at the exit region, for multi-type air-conditioning/refrigeration systems. Mathematical equations describing the characteristics of compressor, condenser, evaporator, and electronic expansion valve are first derived. Then, the transfer functions from the current input of the electronic expansion valve to wall temperatures of evaporator tube at two-phase region and superheated region, respectively, are derived. The stability and performance of the closed loop system with a PI controller are analyzed by Nyquist stability criterion. Simulation results are provided.

  • PDF

Optimal design of binary current leads cooled by cryogenic refrigerator (극저온 냉동기로 냉각되는 이중전류도입선의 최적설계)

  • Song, S.J.;Chang, H.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.552-560
    • /
    • 1997
  • Analysis is performed to determine the optimal lengths or cross-sectional areas of refrigerator-cooled current leads that can be applied to the conduction-cooled superconducting systems. The binary current lead is composed of the series combination of a normal metal at the upper(warm) part and a high $T_c$ superconductor(HTS) at the lower(cold) part. The heat conduction toward the cold end of HTS part constitutes a major refrigeration load. In addition, the joint between the parts should be cooled by a refrigerator in order to reduce the load at the low end and maintain the HTS part in a superconducting state. The sum of the work inputs required for the two refrigeration loads needs to be minimized for an optimal operation. In this design, three simple models that depict the refrigeration performance as functions of cooling temperature are developed based on some of the existing refrigerators. By solving one-dimensional conduction equation that take into account the temperature-dependent properties of the materials, the refrigeration works are numerically calculated for various values of the joint temperature and the sizes of two parts. The results show that for given size of HTS, there exist the optimal values for the joint temperature and the size of the normal metal. It is also found that the refrigeration work decreases as the length of HTS increases and that the optimal size of normal metal is quite independent of the size of HTS. For a given length of HTS, there is an optimal cross-sectional area and it increases as the length increases. The dependence of the optimal sizes on the refrigerator models employed are presented for 1kA leads.

  • PDF

Characteristics on Evaporating Heat Transfer and Pressure Drop of HCs Refrigerants (탄화수소계 냉매의 증발 열전달 및 압력강하 특성)

  • Lee Kwang-Bae;Lee Ho-Saeng;Kim Jae-Dol;Yoon Jung-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.681-687
    • /
    • 2005
  • Experimental results for heat transfer characteristic and pressure gradients of HCs refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 during evaporating inside horizontal double pipe heat exchangers are presented. The test sections which has one tube diameter of 12.70 m with 0.86 mm wall thickness, another tube diameter of 9.52 mm with 0.76 mm wall thickness are used for this investigation. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were higher than that of R-22. The average evaporating heat transfer coefficient increased with the increase of the mass flux. It showed the higher values in hydrocarbon refrigerants than R-22. Hydrocarbon refrigerants have higher pressure drop than R-22 in 12.7 mm and 9.52 mm. This results form the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air- conditioning systems.