• Title/Summary/Keyword: Refrigeration Facility

Search Result 83, Processing Time 0.028 seconds

Development of a Hospital Foodservice Facility Plan and Model based on General Sanitation Standards and RACCP Guidelines (병원급식에 일반위생관리기준과 HACCP 제도 적용을 위한 시설모델 개발)

  • 이정숙;곽동경;강영재
    • Korean journal of food and cookery science
    • /
    • v.19 no.4
    • /
    • pp.477-492
    • /
    • 2003
  • The purposes of the study were to establish HACCP-based standards and guidelines for conducting a plan review to build, or renovate, hospital food service establishments, and ensure the safety of foodservice and reduce the risk of food borne illness. The scope of the study included suggestion for the planning of hospital foodservice facilities: layout, design, equipment and modeling. The results of this study can be summarized as follows: 1) The development of a foodservice facility plan based on the results of a survey, literature reviews and the results of interviews with foodservice managers from 9 general hospitals. This was composed of operational policies in foodservices, layout characteristics, space allocation, selection, design, specification standards for equipment and the construction principles of foodservice facilities. 2) Two foodservice facility models were developed, one for general hospitals with 900 beds (2,000 patients and 2,500 employee meals per day) and the other for general hospitals with 300 beds (600 patients and 650 employees meals per day). 3) The suggested kitchen space requirements for the foodservice facility models were 341.2 ㎡ (W 17,100mm x L 23,700mm) and 998.8㎡ (W 35,600mm x L 32,800mm) for the 300 and 900 beds hospitals, respectively, with both designs being rectangular. The space requirements for the equipment, in relation to the total operational area, in terms of ratios were 1:3.5 and 1:3.8 for the 300 and 900 beds hospitals, respectively. The recommended space allowances per bed for the developed foodservice facility models were 1.15 ㎡ and 1.11 ㎡ for the 300 and 900 beds hospitals, respectively, which were increased by more than 30% compared to those suggested in the precedent study, and considered appropriate for the implementation of the HACCP system. 4) The hospital foodservice facilities plans and models were developed based on the general sanitation standards, guidelines and the HACCP system, and included foodservice facility layout, product flow, physical separation between contaminated and sanitary areas, foodservice facility specifications with a 1/300 scale for a 300 bed, and a 1/400 scale for a 900 beds blueprint. 5) The main features of the developed foodservice facility plans and models were; physical separation between contaminated and sanitary areas to prevent cross contamination, product flow in one direction from the arrival of the raw material to the finished product, and separation of different work areas and the process of receiving & preparation of products, refrigeration & storage, cooking, assembly, cleaning & disinfection, employee areas and janitorial facilities. The proposed models from this study were presented as examples for those wanting to build, or renovate, their facility for the production of foods.

An Experimental Investigation of Thermodynamic Performance of R-22 Alternative Blends

  • Kim, Chang-Nyeon;Park, Young-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.36-44
    • /
    • 1998
  • R-410a and R-407c which have the best potential among R-22 alternatives were tested as drop-in refrigerants against a set of R-22 baseline tests. The performance evaluations were carried out in a psychometric calorimeter test facility using the residential spilt type air conditioner under the ARI rating conditions. Except the lubricant and hand-operated expansion valve, the other parts of the air conditioner were the same with the commercial system. Performance characteristics were measured; compressor power, capacity, VCR, mass flow rate and COP. The tests showed that R-407c can be directly charged into the current refrigeration system because its vapor pressure and other thermochemical properties are similar to those of R-22. However, it is required to change the volume flow rate of compressor in order to achieve the volumetric capacity of R-22. This results from its relatively small VCR and capacity. Meanwhile, R-410a has vapor pressure values too high to be substituted for the current system and this resulted relatively low COP of R-410a compared to that of R-22.

  • PDF

Experimental study on the performance improvement of a screw-compressor-type chiller (스크류 압축식 냉동기의 성능향상에 관한 실험적 연구)

  • Lee, D.-Y.;Jung, S.-H.;Kang, B.H.;Hong, H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.48-60
    • /
    • 1999
  • An experimental study on the performance enhancement of a screw-compressor-type chiller with 100kW of nominal cooling capacity has been carried out. Performance test facility was developed to investigate the effects of a partial modification from the existing chiller on the performance. By replacing the existing shell-and -tube heat exchangers with plate heat exchangers, the cooling capacity is increased by 15~18% and the COP is also increased by 19~21% depending on the operation temperature range. Charging mixed refrigerant R22/R142b(80 : 20) instead of R22 into the chiller with plate heat exchangers improves the cooling capacity by 4% and the COP very largely by 30%. Each contribution of the plate evaporator, plate condenser, and mixed refrigerant to the performance enhancement is examined by analyzing the refrigeration cycle and the heat transfer processes. It is also shown that the chiller performance can be improved by adapting 2-stage-compression cycle using an economizer.

  • PDF

An experimental investigation of thermodynamic performance of R-22 alternative blends (R-22 대체용 혼합냉매의 열역학적 성능에 대한 실험연구)

  • Hwang, E.P.;Kim, C.N.;Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.82-91
    • /
    • 1997
  • R-410a and R-407c witch have the best potential among the substances being considered as R-22 alternatives were tested as "drop in" refrigerants against a set R-22 baseline tests for comparison. The performance evaluations were carried out in a psychrometric calorimeter test facility using the residential split-type air conditioner under the ARI rating conditions. Other than the use of different lubricant and a hand-operated expansion valve, one of the commercial systems was selected for the experiment. Performance characteristics were measured; compressor power, capacity, VCR, mass flow rate and COP. The tests showed that R-407c can be directly applied to the existing refrigeration system because of its similar vapor pressure and other thermopysical properties with those of R-22. However, it required change to the volume flow rate of compressor in order to achieve the similar performance with R-22 because of its relatively small VCR and capacity. Meanwhile, R-410a has too high a vapor pressure to be applied to the existing system and this feature results in relatively low COP of the system compared to that of R-22. But this could be improved by changing compressor design considering R-410a's relatively high VCR and capacity compared to those of R-22.

  • PDF

Simulation Study of Hydrogen Liquefaction Process Using Helium Refrigeration Cycle (헬륨 냉동사이클을 이용한 수소액화 공정모사 연구)

  • Park, Hoey Kyung;Park, Jin-Soo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • Compared to gaeous hydrogen, liquid hydrogen has approximately 1/800 volume, 800 times higher volumetric energy density at the same pressure, and the advantage of lower explosion risk and easier transportation than gaseous hydrogen. However, hydrogen liquefaction requires larger scale facility investment than simple compression storage method. Therefore, the research on energy-saving hydrogen liquefaction processes is highly necessary. In this study, helium/neon (mole ratio 80 : 20) refrigeration cycle was investigated as the main refrigeration process for hydrogen liquefaction. Process simulation for less energy consumption were carried out using PRO/II with PROVISION V10.2 of AVEVA. For hydrogen liquefaction, energy consumption was compared in three cases: Using a helium/neon refrigerant cycle, a SMR+helium/neon refrigerant cycle, and a C3-MR+helium/neon refrigerant cycle. As a result, the total power consumptions of compressors required to liquefy 1 kg of hydrogen are 16.3, 7.03 and 6.64 kWh, respectively. Therefore, it can be deduced that energy usage is greatly reduced in the hydrogen liquefaction process when the pre-cooling is performed using the SMR process or the C3MR process, which have already been commercialized, rather than using only the helium/neon refrigeration cycle for the hydrogen liquefaction process.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

An Experimental Study on the Deodorization Performance of Exhaust Filter Unit in a Laboratory Animal Breeding Facility (실험동물 사육실에서의 Exhaust Filter Unit의 악취제거성능에 관한 실험적 연구)

  • Kwon, Soon Wook;Hong, Jin Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.4
    • /
    • pp.194-200
    • /
    • 2013
  • In this study, an exhaust filter unit for removing bad smells is designed and manufactured to understand the characteristics, damages, and effects on humans and animals of bad smell substances in laboratory animal breeding facilities. Using the exhaust filter unit, a deodorization performance test using ammonia gas, as a typical bad smell in an animal breeding room, was carried out for three types of activated and impregnated charcoal filters. The experimental results showed that the pressure loss of the HEPA and carbon filter was increased with flow rate and that the average deodorization performance for the case where an impregnated carbon filter was installed was a maximum value of between 93 and 96%, with various fractional flow rates ranging from 1,500 to $3,500m^3/h$ in a laboratory animal breeding room. The experimental results will also be used for the design and manufacture of a practical and efficient exhaust filter unit to cope with bad smell problems in animal breeding facilities.

A Study on the Improvement of the Refuge safety area in High-rise Buildings Type (초고층 건축물의 용도별 피난안전구역 성능확보 방안에 관한 연구)

  • Lee, Byung-Hyun;Lee, Kyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.288-292
    • /
    • 2016
  • The purpose of this study was to improve the refuge safety area in the high-rise building type. Each simulation was conducted to evaluate the performance of three types in improving the refuge safety area. Targeting the first 63 floors (no refuge safety area), secondly, to target up to the $30^{th}$ floor (refuge safety area on the $30^{th}$ floor, $47^{th}$ floor) specified in domestic laws, and finally, the $20^{th}$ floor (evacuation safety area on the $20^{th}$ floor, $42^{th}$ floor) were considered as targets. Through this analysis, the following results were obtained : The floor for the refuge safety area through simulations showed that the evacuation time is low. It is necessary to improve the floor for the refuge safety area by using the characteristics of the domestic fire fighting vehicle. The first floor for the refuge safety area from the ground floor differs according to the distance and height of the building floor. However, in the case of a business facility it is 15F, and in the case of apartment housing, it is 20F.

An experimental study on the multiple parameter switching control for floor heating system (바닥 난방공간의 다인자 제어에 관한 실험적 연구)

  • Cho, S.H.;Tae, C.S.;Jang, C.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.472-483
    • /
    • 1997
  • An experimental facility consisting of two $3{\times}4.4{\times}3.8m$ rooms identical in construction is built. Each room has a control system and storage tank supplying hot water to the radiant floor heating system. The facility enables simultaneous comparision of two different control stratigies each implemented in a separate room. The operating performance of three kinds of flow control scheme is tested and compared in this study : (i) conventional on-off control based on feedback from room air temperature (ii) TPSC(two parameter switching control) (iii) TPOC(two parameter on-off control). Results show that TPSC and TPOC using room air and surface temperature sequentially as feedback signal to control hot water supply is the better temperature regulation scheme than conventional control based on feedback from only room air temperature. They are good candidates for the room with radiant floor heating system under continuous and intermittent heating mode.

  • PDF

Optimal Cooling Operation of a Single Family House Model Equipped with Renewable Energy Facility by Linear Programming (신재생에너지 단독주택 모델 냉방운전의 선형계획법 기반 운전 최적화 연구)

  • Shin, Younggy;Kim, Eui-Jong;Lee, Kyoung-ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.12
    • /
    • pp.638-644
    • /
    • 2017
  • Optimal cooling operation algorithm was developed based on a simulation case of a single family house model equipped with renewable energy facility. EnergyPlus simulation results were used as virtual test data. The model contained three energy storage elements: thermal heat capacity of the living room, chilled water storage tank, and battery. Their charging and discharging schedules were optimized so that daily electricity bill became minimal. As an optimization tool, linear programming was considered because it was possible to obtain results in real time. For its adoption, EnergyPlus-based house model had to be linearly approximated. Results of this study revealed that dynamic cooling load of the living room could be approximated by a linear RC model. Scheduling based on the linear programming was then compared to that by a nonlinear optimization algorithm which was made using GenOpt developed by a national lab in USA. They showed quite similar performances. Therefore, linear programming can be a practical solution to optimal operation scheduling if linear dynamic models are tuned to simulate their real equivalents with reasonable accuracy.