• Title/Summary/Keyword: Refrigeration Effect

Search Result 849, Processing Time 0.025 seconds

Experimental Study on Heating Performance Characteristics of Air Source Heat Pump with Air to Water Type (공기열원 히트펌프의 난방 성능특성에 관한 실험적 연구)

  • Lee, Kwon-Jae;Kwon, Young-Chul;Chun, Chong-Keun;Park, Sam-Jin;Kwon, Jeong-Tae;Huh, Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.400-405
    • /
    • 2011
  • This paper presents the heating performance characteristics of the air source heat pump with air to water type. The heating capacity, COP, P-h diagram were measured at various operating conditions, air-side temperatures, relative humidities, and inlet/outlet water temperature under the standard heating condition of KS B 6275. The experimental data for the heat pump were measured using the air-enthalpy calorimeter and the constant temperature water bath. As the air-side temperature increases, the heating capacity and COP increase. The effect of the air-side relative humidities on the heat pump performance is insignificant. The heat pump performance on inlet and outlet water temperatures and air-side temperatures(-7, -11, $-15^{\circ}C$) were studied. Heating capacity and COP increased about 27~39% with the air-side temperature increasing. Enthalpy between the front and the rear of condenser decreased about 6% by increasing of the inlet water temperature. These results can be utilized in the design of the air source heat pump system with air to water type.

Performance Prediction on the Application of a Ground-Source Heat Pump(GSHP) System in an Office Building (업무용 건물의 지열 히트펌프 시스템에 대한 성능 예측)

  • Sohn, Byonghu;Kwon, Han Sol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.409-415
    • /
    • 2014
  • Ground-source heat pump (GSHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy efficiency. These systems use the ground as a heat source and the heat sink for cooling mode operation. The purpose of this simulation study is to evaluate the performance of a hypothetical GSHP system in an office building and to assess the energy saving effect against the existing HVAC systems (boiler and turbo chiller). We collected monthly energy consumption data from an actual office building ($32,488m^2$) in Seoul, and created a model to calculate the hourly building loads with EnergyPlus. In addition, we used GLD (Ground Loop Design) V8.0, a GSHP system design and simulation software tool, to evaluate hourly and monthly performance of the GSHP system. The energy consumption for the GSHP system based on the hourly simulation results were estimated to be 582.6 MWh/year for cooling and 593.2 MWh/year for heating, while those for the existing HVAC systems were found to be 674.5 MWh/year and 2,496.4 MWh/year, respectively. The seasonal performance factor (SPF) of the GSHP system was also calculated to be in the range of 3.37~4.28.

A Study on Effective Energy Use of the Open Type Ground Heat Exchanger Using Underground Temperature Gradient (지중온도 경사를 이용한 효율적 지중에너지 이용 방안에 관한 연구)

  • Ryu, Hyungkyou;Chung, Minho;Lee, Byungseok;Rhew, Hyojun;Choi, Hyunjun;Choi, Hangseok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.401-408
    • /
    • 2014
  • This paper proposes an optimum operation method for open type ground heat exchangers. A series of TRTs and artificial heating/cooling operations were carried out while monitoring temperature in the hole of SCW. The ground temperature naturally increases with depth, but a switch between the cooling/heating mode results in a change in the distribution of ground temperature. The effect of the mode change was evaluated by performing LMTD and COMSOL multiphysics analysis for a reduced model with the depth of 150 m. As a result, in the cooling mode, the upstream operation is more efficient than the downstream operation and reduces EWT by $2.26^{\circ}C$. On the other hand, in the heating mode, the downstream operation is advantageous over the upstream operation and increases EWT by $3.19^{\circ}C$. The merit of the optimum operation will be enhanced for the typical dimension of SCW with a depth of 400~500 m. In the future, an open type ground heat exchanger system adopting the optimum operation with variation in the ground temperature will be used in practice.

The Study on the Phenomenon of Heat Transfer on a Downward Isothermal Circular Surface by an Impinging of Upward Circular Nozzle Jet (상향 원형노즐 제트에 의한 하향 등온 원형평면에서의 열전달 현상에 관한 연구)

  • Lee, In Jae;Eom, Yong Kyoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.450-457
    • /
    • 2016
  • While many studies on the heat transfer effect of an impinging jet have been published, most studies focus on the downward impinging jet. This study investigates the impinging jet heat transfer phenomenon when water at a temperature of $24^{\circ}C$ impinges on the downward isothermal circular plate at 60, 70, and $80^{\circ}C$ and when the upward round jet nozzle is 4, 6, and 8 mm diameter with a flow rate 3.6, 4.6, and 5.6 L/min, respectively, and when the ratio of the nozzle clearance/nozzle diameter (H/D) is 1. The results showed that, as the nozzle diameter decreases, the heat transfer coefficient increases at a constant flow rate. The correlation equation of $Nu_r$, $Pr_r$, and $Re_{jg}$ is obtained in the impinging and constant velocity flow region $(Nu_r/Pr^{0.4}_r)Dr=4.6[Re_{jg}(r/R_c)Dr]^{0.8}$ at all flow rates, in the deceleration and falling flow regions $(Nu_r/Pr^{0.4}_r)Dr=42.7{\mid}Re_{jg}(r/R_c)Dr-345.7{\mid}^{0.3}$ at 3.6 L/min, $(Nu_r/Pr^{0.4}_r)Dr=92.4{\mid}Re_{jg}(r/R_c)Dr-16.8{\mid}^{0.2}$ at 4.6 L/min, and $(Nu_r/Pr^{0.4}_r)Dr=322.4{\mid}Re_{jg}(r/R_c)Dr-536.2{\mid}^{0.01}$ at 5.6 L/min.

Analysis of Particles Motion in Vertical Rayleigh Flow (수직 Rayleigh 유동내의 입자 거동 해석)

  • Ko, Seok-Bo;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.447-456
    • /
    • 2007
  • Suspended particles behavior when they go through a vertical riser with heat transfer is of significant concern to system designers and operators in pneumatic transport, various processes such as in chemical, pharmaceutical and food industries. When it comes with the energy system, that knowledge is critical to the reliable design practices of related equipment as heat exchangers, especially in the phase of system scale-up. Without haying a good understanding of the related physics, many scale-up practices based on their pilot plant experience suffer from unexpected behaviors and problems of unstable fluidization typically associated with excessive pressure drop, pressure fluctuation and even unsuccessful particle circulation. In the present study, we try to explain the observed phenomena with related physics, which may help understanding of our unanswered experiences and to provide the designers with more reliable resources for their work. We selected hot exhaust gas with solid particle that goes through a heat exchanger riser as our model to be considered. The effect of temperature change on the gas velocity, thermodynamic properties, and eventually on the particles motion behavior is reviewed along with some heat transfer analyses. The present study presents an optimal riser length at full scale under given conditions, and also defines the theoretical limiting length of the riser. The field data from the numerical analysis was validated against our experimental results.

An Evaluation and Prediction of Performance of Road Snow-melting System Utilized by Ground Source Heat Pump (지열원히트펌프를 활용한 도로융설시스템의 성능 평가 및 예측)

  • Choi, Deok-In;Hwang, Kwang-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.138-145
    • /
    • 2012
  • Because of the climate changes and the development of building technologies, the cooling loads have been increased. Among the various renewable energies, geothermal energy is known as very useful and stable energy for heating and cooling of building. This study proposes a road snow-melting system of which heat is supplied from GSHP(Ground source heat pump) in viewpoint of the initial investment and annual running performance, which is also operating as a main facility of heating and cooling for common spaces. The results of this study is as followings. From the site measurement, it is found out that the road surface temperature above the geothermal heating pipe rose up to $5^{\circ}C$, which is the design temperature of road snow-melting, after 2 hours' operation and average COP(Coefficient of performance) was estimated as 3.5. The reliability of CFD has confirmed, because the temperature difference between results of CFD analysis and site measurement is only ${\pm}0.4^{\circ}C$ and the trend of temperature variation is quite similar. CFD analysis on the effect of pavement materials clearly show that more than 2 hours is needed for snow-melting, if the road is paved by ascon or concrete. But the road paved by brick is not reached to $5^{\circ}C$ at all. To evaluate the feasibility of snow-melting system operated by a geothermal circulation which has not GSHP, the surface temperature of concrete-paved road rise up to $0^{\circ}C$ after 2 hour and 40 minutes, and it does never increase to $5^{\circ}C$. And the roads paved by ascon and brick is maintained as below $0^{\circ}C$ after 12 hours geothermal circulation.

An Experimental Study of Nucleate Boiling Heat Transfer With EHD Technique in CFC-11 and HCFC-123 (Chiller용 냉매 CFC-11과 대체냉매 HCFC-123의 전기장을 사용한 핵비등 열전달 촉진에 관한 연구)

  • Kwak, T.H.;Kim, J.H.;Jung, D.S.;Kim, C.B.;Cha, T.W.;Han, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.365-379
    • /
    • 1994
  • Pool boiling experiments were carried out to study the effect of electric field on nucleate boiling heat transfer. CFC-11 and its alternative HCFC-123 were used as working fluids. Boiling on both single tube and a bundle of five tubes was investigated. Heat flux varied from 5 to $25kW/m^2$ while the applied voltage changed from 0 to 1kV. The results showed that at low heat flux where boiling was not present or very weak, electric field-induced forced convection helped increase the heat transfer coefficients of CFC-11 and HCFC-123 significantly(4-15 times increase). However, at higher heat flux, nucleate boiling of CFC-11 which is a highly dielectric fluid, was not affected significantly by the application of electric field. In contrast to CFC-11, even at high heat flux, nucleate boiling of CFC-11 which has a relatively larger electric conductivity than CFC-11, was vigorously increased up to 2-4 times. The additional power required to apply the electric field was 1-2% of the total power consumption by the heater. The increase in overall heat transfer coefficient of evaporators with HCFC -123 was about 40%, suggesting a considerable reduction in evaporator size with EHD technique.

  • PDF

Antibacterial Characteristics of Silver Nano-Particles Attached to Activated Carbon Filter (은나노를 부착한 활성탄 필터의 제균특성)

  • Heo, Ju-Yeong;Nam, Sang-Yeob;Kang, Jeong-Hee;Song, Ji-Hyeon;Kang, Byung-Ha;Han, Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.583-589
    • /
    • 2009
  • Activated carbon has long been used in purification processes for indoor air quality. However, the bioaerosol removal by activated carbon is not often sufficient to be used in an air control devise. In order to overcome these problems, silver nano-particles have been proposed as an antibacterial agent on the surface of activated carbon. Silver or silver ions have been known for antimicrobial activities. In this study, bioaerosol generated by using an Escherichia coli culture was introduced to a lab-scale column packed with activated carbon (AC) and silver nano-particles attached to activated carbon (Ag-AC). E. coli was almost completely removed in the Ag-AC column, whereas bioaerosol penetrated through the AC column. To determine the antibacterial effect of different filter materials in a full-scale air-handling system, another experiment was conducted using a wind tunnel equipped with a heat exchanger and three filter materials including commercial fabric, AC and Ag-AC. It was found that E. coli proliferated on the surface of the heat exchanger after 5 days, which dramatically increased bioaerosol counts in the effluent air stream. The fabric filter could not control the increased bioaerosol and most of the E. coli penetrated the filter. The bacterial removal efficiency was found to be approximately 45% in the AC filter, while the antibacterial efficiency increased to 70% using the Ag-AC filter. Consequently, the Ag-AC filter can be an effective method to control bioaerosol and improve indoor air quality.

Investigation of Local Flow Parameters Caused by Flow Acceleration Corrosion Downstream of an Orifice in a Piping System (배관계 오리피스 하류에서 유동가속부식으로 인한 국소 유동 파라미터에 대한 조사)

  • Kim, Kyung-Hoon;Cho, Yun-Su;Kim, Hyung-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.377-385
    • /
    • 2013
  • In this study, the performance of an impeller according to blade length and pitch angle was studied experimentally by building a variable pitch impeller while changing blade length to review the effect of blade length and pitch angle on a fan's performance. The pitch angle was changed in six steps from $20^{\circ}{\sim}45^{\circ}$ at intervals of $5^{\circ}$ while the blade lengths were changed to 90 mm, 100 mm, 110 mm and 120 mm with an identical airfoil shape while carrying out the experiment. The results are summarized as follows : The air flow per static pressure of axial fans increased linearly with increase of pitch angle, but the high static pressure showed a decrease at a pitch angle of $35^{\circ}$. The shaft power increased proportionally to the pitch angle at all blade lengths; the larger the pitch angle, the larger the measured increase of shaft power. This is because the drag at the fan's front increases with the pitch angle. In the axial fans considered in this research, the flow and incre.

Hydraulic Behaviors of KSTAR PF Coils in Operation

  • Park, S.H.;Chu, Y.;Kim, Y.O.;Yonekawa, H.;Chang, Y.B.;Woo, I.S.;Lee, H.J.;Park, K.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.24-27
    • /
    • 2012
  • The superconducting coil system is one of the most important components in Korea Superconducting Tokamak Advanced Research (KSTAR), which has been operated since 2008. $Nb_3Sn$ and NbTi superconductors are being used for cable-in-conduit conductors (CICCs) of the KSTAR toroidal field (TF) and poloidal field (PF) coils. The CICCs are cooled by forced-flow supercritical helium about 4.5 K. The temperature, pressure and mass flow rate of the supercritical helium in the CICCs are interacting with each other during the operation of the coils. The complicate behaviors of the supercritical helium have an effect on the operation and the efficiency of the helium refrigeration system (HRS) by means of, for instance, pressure drop. The hydraulic characteristics of the supercritical helium have been monitored while the TF coils have stably achieved the full current of 35 kA. In other hands, the PF coils have been operated with various pulsed or bipolar mode, so the drastic changes happen in view of hydraulics. The heat load including AC loss on the coils has been analyzed according to the measurement. These activities are important to estimate the temperature margin in various PF operation conditions. In this paper, the latest hydraulic behaviors of PF coils during KSTAR operation are presented.