• Title/Summary/Keyword: Refrigerating efficiency

Search Result 667, Processing Time 0.022 seconds

A Study on Lighting Performance Evaluation of Light-Shelf using Crystal Face (결정면 적용 광선반 채광성능 평가 연구)

  • Lee, Heangwoo;Rogers, Kyle Eric;Seo, Janghoo;Kim, Yongseong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.395-401
    • /
    • 2015
  • Recently, many research studies have been carried out on the efficiency of light-shelf daylighting systems, especially comparing performance improvements and the limitations of reflective surfaces and their lighting performance. In this study, a crystal face reflective surface is proposed. The objective of the study is to evaluate the lighting performance of a crystal face light-shelf through a performance study. The performance study was carried out in a full scale test-bed in order to calculate the light distribution and energy consumption utilizing the standard indoor illumination as an index. The conclusions of the performance study are as follows. 1) The optimal angle of incidence for daylighting for both the operable flat type light-shelf and the crystal face light-shelf are taken in the natural environment on the dates of the winter and summer solstices, as well as the autumn and spring equinoxes. 2) The application and installation of the crystal face light-shelf can produce a 29.9%~34.3% increase of light distribution within the indoor space. However, the increase of light distribution can also lead to a decrease in the uniformity ratio, a design challenge that should be considered when applying a crystal face light-shelf. 3) It is possible to achieve a 7.98%~13.3% greater reduction in energy consumption when applying a crystal face light-shelf than when applying a flat type light-shelf. The increase in the number of crystal faces should concur with the analysis of the energy reduction. A limitation of the study is that only one predetermined pattern was performance tested for a crystal face light-shelf. In order to carry out further research on crystal face light-shelves, additional performance studies are needed based on alternative patterns and designs.

Experimental Study on the Performance of a Simultaneous Heating and Cooling Heat Pump in the Heat Recovery Mode (동시냉난방 열펌프의 전열회수 성능 특성에 관한 연구)

  • Choi, Jong-Min;Chung, Hyun-Joon;Joo, Young-Ju;Kang, Hoon;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.11
    • /
    • pp.718-726
    • /
    • 2008
  • The cooling load in winter is significant in buildings and hotels because of the usage of office equipments and the high efficiency of wall insulation. Hence, the development of a multi-heat pump that can cover heating and cooling simultaneously for each indoor unit is required. In this study, the performance of a simultaneous heating and cooling heat pump was investigated in the heat recovery mode (HR mode). The system adopted a variable speed compressor using R410A with four indoor units and one outdoor unit. In the HR mode, the capacity and COP were improved as compared with those in the cooling or heating mode because the waste heat in the outdoor unit was utilized as useful heat in the indoor units. However, energy imbalance between heating and cooling capacity of each indoor unit was observed in the 2H-1C HR mode. Therefore, the performance of the system in the 2H-1C HR mode was enhanced by controlling refrigerant flow rate through the outdoor unit.

Experimental Study on the Cooling Characteristics of an Environmental Control System for Avionic Reconnaissance Equipment (항공정찰장비용 환경제어시스템의 냉각특성에 관한 실험적 연구)

  • Kang, Hoon;Park, Hyung-Pil;Lee, Eung-Chan;Kim, Yong-Chan;Chi, Yong-Nam;Choi, Hee-Ju;Byeon, Young-Man;Kim, Young-Jin;Oh, Kwang-Yoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.519-526
    • /
    • 2009
  • Environmental control system is adopted to control the thermal load from the avionic equipment in the reconnaissance pod which is mounted under a fighter aircraft, undergoing large and rapid environmental changes with the variations of flight altitude and velocity. In this study, an environmental control system was designed and built by adopting vapor compression cycle using R-124. The cooling performance characteristics of the system were measured varying operating parameters: thermal load in the pod, air mass flow rate through evaporator, condenser inlet air temperature, and air mass flow rate through condenser. The effects of the experimental parameters on the system performance were analyzed based on the experimental results. The problems on the designed system were also analyzed and the solutions were suggested to improve system efficiency and to obtain stable operation.

Numerical Simulation of Smoke Ventilation in Rescue Route and Cross Passage of Railroad Tunnel (철도터널 화재시 연결통로 및 대피로 제연을 위한 수치해석 연구)

  • Yang, Sung-Jin;Hur, Nahm-Keon;Ryou, Hong-Sun;Kim, Dong-Hyeon;Jang, Yong-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • A transient 3-D numerical simulation was performed to analyze the fire safety in a railway tunnel equipped with a mechanical ventilation system. The behavior of pollutants was studied for the emergency operation mode of ventilation system in case of fire in the center of the rescue station and near the escape route. Various schemes of escape route construction for connection angle($45^{\circ}$, $90^{\circ}$, 135^{\circ}$) and slope($10^{\circ}$) were evaluated for the ventilation efficiency in the fire near the escape route. From the results, it was shown that the mode of the ventilation fan operation which pressurizes the tunnel not under the fire and ventilates the smoke from the tunnel under the fire is most effective for the smoke control in the tunnel in case of the fire occurrence. It was also shown that the blowing of jet fan from the rescue tunnel to the main tunnel should be in the same direction as the flow direction in the main tunnel arising from the traffic and the buoyancy.

A Study on Numerical Analysis of Flow Uniformity According to Length and Degree Change of Mixed-Evaporator in 500 PS SCR Reactor (500 PS SCR 반응기 혼합증발관 길이와 각도 변화에 따른 유동균일도에 대한 수치해석적 연구)

  • Seong, Hongseok;Lee, Chungho;Suh, Jeongse
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.337-342
    • /
    • 2016
  • A marine SCR System is emerging as an alternative to comply with NOx Tier III Emission standards, a restriction on greenhouse gas from vessels implemented by the International Maritime Organization. The system is greatly affected by the uniformity of the fluid flowing into the catalyst, so the performance of the catalyst of an SCR system needs to be guaranteed. This study conducted research on a mixed evaporator of an SCR system, which is one of the factors affecting the uniformity of the fluid. When the angle of the mixed evaporator is set to $90^{\circ}$, the fluid uniformity is at its highest at 83%, under the condition that the length of the mixed evaporator be 3.5 D. When the length was 3.5 D and less, the fluid uniformity had a tendency to improve relative to the case without a bent pipe. However, a longer mixed evaporator results in a more perfect liquidity development in the pipe with a liquidity distribution similar to the case where no curved pipe is formed in front of the catalyst. A lower angle for the mixed evaporator results in a lower flow uniformity, and a longer length of the mixed evaporator results in a lower difference in the flow uniformity caused by the angle. The flow uniformity can be improved by 6% with a mixed evaporator, which confirmed that all factors applied to an SCR system have a close relationship with the efficiency.

A Study on Influence of Flow Boiling Heat Transfer on Fouling Phenomenon in Nanofluids (나노유체에서 파울링 현상이 유동 비등 열전달에 미치는 영향에 대한 연구)

  • Kim, Woojoong;Yang, Yongwoo;Kim, Younghun;Park, Sungseek;Kim, Namjin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.3
    • /
    • pp.95-102
    • /
    • 2016
  • A boiling heat transfer is used in various industry such as power generation systems, heat exchangers, air-conditioning and refrigerations. In the boiling heat transfer system, the critical heat flux (CHF) is the important factor, and it indicated safety of the system. It has kept up studies on the CHF enhancement. Recently, it is reported the CHF enhancement, when working fluid used the nanofluid with high thermal properties. But it could be occurred nanoflouling phenomenon from nanoparticle deposition, when nanofluid applied the heat transfer system. And, it is reported that the safety and thermal efficiency of heat transfer system could decrease. Therefore, it is compared and analyzed to the CHF and the boiling heat transfer coefficient on effect of artificial nanofouling (coating) in oxidized multi-wall carbon nanotube nanofluids. As the result, the CHF of oxidized multi-wall carbon nanofluids and the CHF of artificial nanofouling in the nanofluids increased to maximum 99.2%, 120.88%, respectively. A boiling heat transfer coefficient in nanofluid increased to maximum 24.29% higher than purewater, but artificial nanofouling decreased to maximum -7.96%.

Experimental Investigation on the Optimal Design of Water Tank for Domestic Hot Water Supply using PEMFC Co-generation System (가정용 고분자 전해질 연료전지 열병합 발전시스템의 급탕 적용을 위한 온수 저장조의 최적 설계에 관한 실험적 연구)

  • Hwang, Yu-Jin;Ahn, Young-Chull;Cheong, Seong-Ir;Jin, Keun-Ho;Lee, Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.394-399
    • /
    • 2008
  • There are many attempts to use a fuel cell system as a residential power generation system. The purpose of this study is to investigate the optimal design of a water tank for a hot water system when the fuel cell co-generation system is combined with a domestic hot water supply system. The demands of hot water supply per month per home are investigated in Busan for a year. It showed somewhat large differences between the actual demand and the designed demand of hot water, but the actual capacity of hourly averaged hot water demands is analyzed as $60{\ell}/h$ in this study based on the actual demand. The experiments are performed in the various inlet and outlet locations of nozzles, and the hot water consumption rates. The experimental results are showed that the optimal capacity of the water tank is $200{\ell}$ when the thermal efficiency, the storing capacity of hot water and the space for installation are considered.

The Comparison of Performance Characteristics in Refrigeration System using $NH_3$ and R22 ($NH_3$와 R22를 사용한 냉동장치의 성능특성 비교)

  • Ha Ok-Nam;Lee Kyu-Tae;Ha Kyung-Soo;Jeong Song-Tae;Kim Jin-Hyun;Hong Seong-In;Yun Kab-Sig;Kim Yang-Hyun;Kwon Il-Wook;Lee Jong-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.377-383
    • /
    • 2006
  • Recently, production and use of Freon substances are restrained due to destruction of ozone layer and grobal warming. In this aspect of environmental problems, the best solution is to use the natural refrigerant such as ammonia. Thus, this study apply the $NH_3$ and R22 to study the performance characteristic from the superheat control and compare the energy efficiency of two refrigerants from the high performance. The condensing pressure of refrigeration system is increased from 1,500 kPa to 1,600 kPa and degree of superheat is increased from 0 to $10^{\circ}C$ at each condensing pressure. As the result of experiment, when comparing the each COP, we knew the $NH_3$ is suitable as the alternative refrigerant of the R22.

Recent Progress in Air Conditioning and Refrigeration Research -A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2000 and 2001- (공기조화, 냉동 분야의 최근 연구 동향 -2000년 및 2001년 학회지 논문에 대한 종합적 고찰 -)

  • 강신형;한화택;조금남;이승복;조형희;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1102-1139
    • /
    • 2002
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2000 and 2001 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD technologies were widely applied for developing facilities and their systems. (2) Most of papers related with heat transfer analysis and heat exchanger shows dealt with convection, evaporation, and channel flow for the design application of heat exchanger. The numerical heat transfer simulation studies have been peformed and reported to show heat transfer characteristics. Experimental as well as numerical studies on heat exchanger were reported, while not many papers are available for the system analysis including heat exchanger. (3) A review of the recent studies on heat pump system shows that performance analysis and control of heat pump have been peformed by various simulations and experiments. The research papers on multi-type heat pump system increased significantly. The studies on heat pipe have been examined experimently for change of working characteristics and strut lure. Research on the phase change has been carried out steadily and operation strategies of encapsulated ice storage tank are reported experimentally in several papers. (4) A review of recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. Evaporation and condensation heat transfer characteristics are investigated for tube shapes and new alternative refrigerants. Studies on components of refrigeration/air conditioning system are carried to examine efficiency for various compressors and performance of new expansion devices. In addition to thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out, however research works on two-phase flow seemed to be insufficient. (5) A review of the recent studies on absorption cooling system indicates that heat and mass transfer phenomena have been investigated to improve absorber performance. Various experimental data have been presented and several simulation models have been proposed. A review of the recent studies on duct and ventilation shows that ventilation indices have been proposed to quantify the ventilation performance in buildings and tunnels. Main efforts have been focused on the applications of ventilation effectiveness in practice, either numerically using computational fluid dynamics or experimentally using tracer gas techniques. (6) Based on a review of recent studies on indoor thermal environment and building service systems, research issues have mainly focused on many innovative ideas such as underfloor air-conditioning system, personal environmental modules, radiant floor cooling and etc. Also, the new approaches for minimizing energy consumption as well as improving indoor environmental conditions through predictive control of HVAC systems, various activities of building energy management and cost-benefit analysis for economic evaluation were highlighted.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 - (공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰-)

  • Choi, Yong-Don;Kang, Yong-Tae;Kim, Nae-Hyun;Kim, Man-Hoe;Park, Kyoung-Kuhn;Park, Byung-Yoon;Park, Jin-Chul;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.