• 제목/요약/키워드: Refrigerant mixtures

검색결과 103건 처리시간 0.021초

비공비 혼합 냉매를 이용한 2단 이코노마이져 시스템 개발 (Development of 2-Stage Economizer System Using the Non-Azeotropic Mixtures.)

  • 염한길;김욱중;이성진;홍용주
    • 연구논문집
    • /
    • 통권25호
    • /
    • pp.77-90
    • /
    • 1995
  • For improving performance of heat pump system, researcher has adapted 2-stage economizer cycle and developed a high-efficiency screw compressor, new working medium(non-azeotropic mixed refrigerant) and counterflow heat exchangers operating with a small temperature difference. Target of this study is development of high performance heat pump system with the 2-stage economizer system using the non-azeotropic mixed refrigerant. For the purpose of excuting target, we constucted computer simulation programs, compared and examed various types of cycle and non-azeotropic mixture. Based on the results from computer simulation we selected optimum mixtures and reflected design and production process of performance test equipment with the 1-stage econmizer system. In order to accomplish the final target, design and production of the 2-stage economizer system, we performed pilot test using the 1-stage economizer performance test system and finally design and production of the 2-stage economizer system.

  • PDF

HFC125+Propane 혼합냉매의 기-액 평형에 관한 실험적 연구 (An Experimental Study of Vapor-Liquid Equilibrium for HFC12S+Propane Refrigerant Mixtures)

  • 강준원;박영무;유재석;이종화
    • 설비공학논문집
    • /
    • 제15권7호
    • /
    • pp.563-571
    • /
    • 2003
  • The forty vapor-liquid equilibrium data of the binary system, HFC125+Propane, were measured between 273.15 and 313.15 K at 10 K interval and the composition range 0.2∼0.75, respectively. Experiments were performed in a circulation type apparatus in which the vapor phase was forced through the liquid phase. The composition at equilibrium were mea-sured by gas chromatography, and its response was calibrated using gravimetrically prepared mixtures. Vapor-liquid equilibrium data were calculated by using CSD equation of state and compared with the experimental data.

프로판-이소부탄 혼합냉매를 적용한 소형 냉동시스템의 성능 특성에 관한 연구 (Performance Characteristics of Propane/isobutane Mixtures in a Small Refrigeration System)

  • 윤원재;김용찬
    • 설비공학논문집
    • /
    • 제14권1호
    • /
    • pp.73-82
    • /
    • 2002
  • A small refrigeration system used in a water purifier was tested by employing propane/isobutane (R-290/R-6OOa) mixtures as an alternative refrigerant of R-12. The drop-in tests were performed by varying mass fraction of propane at 0.25, 0.5 and 0.75 with a change of both refrigerant charge amount and capillary tube length in order to find an optimum composition in aspect of performance and reliability of the system. As a result, the mixture of 50% propane-50% isobutane showed the best performance and reliability among them in a small refrigeration system. During steady state operations, both the COP and refrigeration capacity increased by 4% and 9%, respectively, as compared to the baseline R-12 system. In addition, the propane/isobutane (50/50) mixture system yielded advantages in the minimization of modification and redesigning of system components due to very similar saturation tempera- ture and pressure characteristics with R-12.

HFC 순수냉매 및 3성분 혼합냉매의 수평관내 응축열전달 (Condensation Heat Transfer for Pure HFC Refrigerants and a Ternary Refrigerant Mixture Inside a Horizontal Tube)

  • 오종택;비원 영치
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.233-240
    • /
    • 2000
  • An experimental study of condensation heat transfer was performed for pure refrigerants HFC32, HFCI25, and HFC134a, and a ternary refrigerant mixture of HFC32/125/134a (23/25/52wt%). The heat transfer coefficients were measured inside a horizontal smooth tube 5.8 mm I.D. and 8.0 m long. The refrigerant temperature at inlet was 40 $^{\circ}C$, and the mass flux was varied from 150 to 400 $kg/m^2s$. As for the pure refrigerants, the heat transfer coefficient of HFC32/125/l34a decreased as the quality decreased. In addition, the heat transfer coefficient of HFC32/l25/134a was about 20 % lower than HFC 134a at a low mass flux but showed no reduction at a high mass flux. The heat transfer coefficient of ternary refrigerant mixtures was 30% lower on the average than that of the pure refrigerant.

혼합냉매의 성분비 조절을 통한 열펌프의 용량조절 (Capacity Modulation of a Heat Pump System by Changing the Composition of Refrigerant Mixtures)

  • 김민성;김민수;김용찬
    • 설비공학논문집
    • /
    • 제12권3호
    • /
    • pp.258-266
    • /
    • 2000
  • Experimental investigation and cycle simulation of a capacity modulation of a heat pump system using a hydrofluorocarbon (HFC) refrigerant mixture, R32/134a as an alternative to R22, have been done. In the cycle simulation, the refrigeration system was operated by assigning the temperatures of the external heat transfer fluids with the heat exchangers generalized by an average effective temperature difference. Heating capacity, cooling capacity, and coefficient of performance (COP) of the system were investigated at several operating conditions. Experimental apparatus which had a refrigeration part and a composition changing part was built, and the performance of the heat pump system filled with R32/134a mixture was investigated. A gas-liquid separator was used in the experiment to change the composition by collecting the vapor and the liquid Phase separately, The mass fraction of the charged refrigerant in the heat pump system was 40/60 and 70/30 by weight percentage. The composition of the refrigerant with initial composition of 40/60 varied from 29/71 to 41/59 in the refrigeration cycle. For the refrigerant with initial composition of 70/30, the composition varied from 65/35 to 75/25.

  • PDF

평활관 내 R32/290 혼합냉매의 증발열전달 특성에 관한 실험적 연구 (Experimental studies on the evaporative heat transfer of R32/290 mixtures in a horizontal smooth tube)

  • 조진민;김주혁;윤석호;김민수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.268-273
    • /
    • 2005
  • Because of environmental issues caused by CFC, HCFC or HFC refrigerants, new alternative refrigerants has gained a significant attention. This paper presents experimental information on heat transfer coefficient and pressure drop behavior during evaporation process of R32/290 mixtures in a horizontal smooth tube. A smooth tube with outer diameter of 5 mm and length of 5 m was selected as a test tube. Heat transfer coefficients and pressure drop characteristics were measured for a range of mass fluxes from 497 to 994 $kg/m^2s$, heat fluxes from 12 to 20 $kW/m^2$ and for several mixture compositions(100/0, 75/25, 58.4/41.6, 2s/75, 100/0 by wt% of R32/290). The differences of measured heat transfer characteristics among various R32/290 refrigerant mixtures were analyzed for various compositions.

  • PDF

R-410A/POE 오일 혼합물의 기-액상평형과 상용성에 관한 연구 (Investigation of Vapor-Liquid Equilibrium and Miscibility for R-410A/POE Oil Mixtures)

  • 김창년;송준석;이은호;박영무;유재석;김기현
    • 설비공학논문집
    • /
    • 제12권6호
    • /
    • pp.589-598
    • /
    • 2000
  • The vapor-liquid equilibrium and miscibility measurement apparatus was developed and used to obtain data for refrigerant/oil mixture. The vapor-liquid equilibrium and miscibility data for R-410a/POE32 and R-410A/POE46 oil mixtures are obtained over the temperature range from -20 to $60^{\circ}C\;with\;10^{\circ}C$ intervals and the oil concentration range from 0 to 90 wt%. Using the experimental data, an empirical model is developed to predict the temperature-pressure-concentration relations for R-410A/POE oil mixtures at equilibrium. In the R-410A/POE32 oil mixture, the average root-mean-square deviation between measured data and calculated results from the empirical model is 2.00% and in the R-410a/POE46 oil mixture, that is 3.69%. Flory-Huggins theory is also used to predict refrigerant/oil mixture behavior. Miscibility for R-410A/POE32 oil mixture was observed all over the experimental conditions. Immiscibility for R-410A/POE46 oil mixture was observed at the low oil concentrations(10~30 wt%).

  • PDF

평판 표면에서 HFC32/HFC152a 혼합냉매의 풀 비등 열전달계수 (Pool Boiling Heat Transfer Coefficient of HFC32/HFC152a on a Plain Surface)

  • 강동규;이요한;정동수
    • 설비공학논문집
    • /
    • 제25권9호
    • /
    • pp.484-492
    • /
    • 2013
  • Nucleate pool boiling heat transfer coefficients (HTCs) are measured with HFC32/HFC152a mixture at several compositions. All data are taken at the liquid pool temperature of $7^{\circ}C$, on a horizontal plain square surface of $9.53{\times}9.53$ mm, with heat fluxes of 10 $kW/m^2$ to 100 $kW/m^2$ with an interval of 10 $kW/m^2$, in the increasing order of heat flux. Test results show that the HTCs of these mixtures are up to 45% lower than those of the ideal HTCs calculated by a linear mixing rule with pure fluids' HTCs, due to the mass transfer resistance associated with non-azeotropic refrigerant mixtures. Pool boiling data show the deduction in HTCs with an increase in GTD of the mixture. The present mixture data agree well with five well known correlations, within 20% deviation.

열전달 촉진관에서 HFC32/HFC152a 혼합냉매의 외부 응축열전달계수 (External Condensation Heat Transfer Coefficients of HFC32/HFC152a Mixtures on Enhanced Tubes)

  • 이요한;강동규;김현주;이호생;정동수
    • 설비공학논문집
    • /
    • 제26권7호
    • /
    • pp.315-321
    • /
    • 2014
  • In this study, external condensation heat transfer coefficients (HTCs) of two non-azeotropic refrigerant mixtures of HFC32/HFC152a at various compositions were measured on both 26 fpi low-fin and Turbo-C enhanced tubes, of 19.0 mm outside diameter. All data were taken at the vapor temperature of $39^{\circ}C$, with a wall subcooling of 3~8 K. Test results showed that the HTCs of the tested mixtures on the enhanced tubes were much lower than the ideal values calculated by mass fraction weighting of the pure component HTCs. Also, the reduction of HTCs due to the diffusion vapor film was much larger than that of a plain tube. Unlike HTCs of pure fluids, HTCs of the mixtures measured on enhanced tubes increased, as the wall subcooling increased, which was due to the sudden break-up of the vapor diffusion film with an increase in wall subcooling. Finally, the heat transfer enhancement ratios for mixtures were found to be much lower, than those of pure fluids.

R-22 대체용 혼합냉매의 Drop-In 열역학적 성능 계산 (Drop-In Evaluation of Thermodynamic Performance of R-22 Alternative Refrigerant Mixtures)

  • 주종문;김창년;박영무
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.423-436
    • /
    • 1996
  • Thermodynamic performance of eight zeotropic R-22 alternative refrigerant mixtures selected by AREP(R-22 Alternative Refrigerants Evaluation Program) and R-32/R-125/R-134a(23%/25%/52%), namely R-407C were evaluated by the "drop-in" simulation method. An existing air conditioner was selected and its design data were used for the simulation. "ARI Test A" air conditions were applied. The degree of vapor superheat at the compressor inlet fixed at $5^{\circ}C$ for all the mixtures. The results of the simulation were compared with those of R-22. COPs of all mixtures except for R-32/R-227ea(35%/65%) and R-32/R-125/R-134a(10%/70%/20%), were higher than that of R-22 by 2%~8%, while the capacities were all lower than that of R-22 by 13%~27%. COP of R-32/R-134a(40%/60%) was 2.4% higher but the capacity was 15% lower than those of R-22. In the case of R-32/R-134a(30%/70%), COP and capacity were 5.5% higher and 15% lower than those of R-22, respectively. Among the ternary mixtures, R-407C and R-32/R-125/R-134a(30%/10%/60%) showed the best performance. COP of R-407C was 2.4% higher than those of R-22 but the capacity was 15% lower.

  • PDF