• 제목/요약/키워드: Refrigerant heat exchanger

검색결과 264건 처리시간 0.023초

평판핀이 부착된 증발기의 특성에 관한 연구 (A Study on the Characteristics of Plate Finned-Tubes Evaporator)

  • 손병진;민묘식;김홍배
    • 대한기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.982-991
    • /
    • 1991
  • 본 연구에서는 냉방기에서 널리 이용되고 있는 평판핀이 연속적으로 부착된 다관식 증발 열교환기에 대하여 (1) 냉매의 열역학적 물성치의 변화 (2) 냉매와 공기 측 열전달 계수의 변화 (3) 냉매측 관 마찰 손실등을 고려한 시뮬레이션 프로그램을 작성하고 그 결과를 실험을 통하여 보정 완성하였다. 계산결과로 부터 공조기기의 설계조건, 공조계통 해석을 위한 기초자료를 제시하였다.

히트펌프에서 탄화수소냉매 적용에 관한 실험적 연구 (An Experimental Study on Application of Hydrocarbon Refrigerants for Heat Pump)

  • 유성연;박동성;강태석;이제묘
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1264-1269
    • /
    • 2004
  • This research describes the application of hydrocarbon refrigerants for heat pump system which is needed for fish farm. Tested refrigerants are HCFC-22 and hydrocarbon refrigerants(CARE 50 and ASR-20). CARE 50 is mixture of R-290 and R-170, and ASR-20 is mixture of R-152a, R-290 and other additives. Heat pump consist of shell and tube heat exchanger, scroll compressor, expansion valve and accumulator. Manual expansion valve is used for testing of wide range evaporating temperature. Hydrocarbon refrigerants show a good performance as an alternative for HCFC-22 in the range of evaporating temperature from $-6^{\circ}C$ to $6^{\circ}C$.

  • PDF

비단열 모세관의 영향을 고려한 냉동 사이클 시뮬레이션 (Simulation of the Refrigeration Cycle Equipped with a Non-Adiabatic Capillary Tube)

  • 박상구;손기동;정지환;김윤수
    • 설비공학논문집
    • /
    • 제21권3호
    • /
    • pp.131-139
    • /
    • 2009
  • The simulation of refrigeration cycle is important since the experimental approach is costly and time-consuming. The present paper focuses on the simulation of a refrigeration cycle equipped with a capillary tube-suction line heat exchanger(SLHX), which is widely used in small vapor compression refrigeration systems. The present simulation is based on fundamental conservation equations of mass, momentum, and energy. These equations are solved through an iterative process. The non-adiabatic capillary tube model is based on homogeneous two-phase flow model. This model is used to understand the refrigerant flow behavior inside the non-adiabatic capillary tube. The simulation results show that both of the location and length of heat exchange section influence the coefficient of performance (COP).

미소직경관 내 증발열전달 특성에 관한 실험적 연구 (An Experimental Study on Evaporative Heat Transfer Characteristics in a Small Diameter Tube)

  • 황윤욱;김민수
    • 대한기계학회논문집B
    • /
    • 제25권2호
    • /
    • pp.216-224
    • /
    • 2001
  • Experiments have been performed to investigate evaporative heat transfer characteristics of R-134a flowing in a small diameter tube. Test section was made of stainless steel tube with an inner diameter of 2.2mm and was uniformly heated by electric current which was applied to the tube wall. The local saturation temperature of refrigerant flowing in a tube is calculated from the measured local saturation pressure by using an equation of state. Inner wall temperature was calculated from measured outer wall temperature, accounting for heat generation in the tube and one dimensional heat conduction through the tube wall. Mass quality of refrigerant flowing in a tube was calculated by considering energy balance in the pre-heater and the test section. Heat flux was varied from 19 to 64kW/$m^2$, and mass flux was chanted from 380 to 570kg/$m^2$s for each heat flux condition. From this study, heat transfer in a small diameter tube is affected by heat flux as well as mass flux for a wide range of mass quality. Heat transfer coefficient in a small diameter tube is much greater than that in medium sized tubes. Test results in this study are compared with Gungor and Winterton correlation, which gives an absolute average deviation of 27%.

Evaporation Heat Transfer Characteristics of $CO_2$ in a Horizontal Tube

  • Lee Dong-Geon;Son Chang-Hyo;Oh Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.297-305
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver. a variable-speed pump. a mass flow meter. a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$. saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has greatly effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality. heat flux and saturation temperature. The evaporation heat transfer coefficient of $CO_2$ is very larger than that of R-22 and R-134a. In making a comparison between test results and existing correlations. the present experimental data are the best fit for the correlation of Jung et al. But it was failed to predict the evaporation heat transfer coefficient of $CO_2$ using by the existing correlation. Therefore. it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

Evaporation Heat Transfer Characteristics of $CO_2$ in a Horizontal Tube

  • Son Chang-Hyo;Kim Dae-Hui;Choi Sun-Muk;Kim Young-Ryul;Oh Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권4호
    • /
    • pp.167-174
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500kg/m^2s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$, and heat flux of 10 to $40kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has greater effect on nucleate boiling than convective boiling. The evaporation heat transfer coefficient of $CO_2$ is highly dependent on the vapor quality, heat flux and saturation temperature. The evaporation heat transfer coefficient of $CO_2$ is very larger than that of R-22 and R-134a. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the correlation of Jung et al. But the existing correlations failed to predict the evaporation heat transfer coefficient of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

열교환기 구조 변화에 따른 $NH_3$와 R22의 성능특성연구 (The Study on Performance Characteristics of $NH_3$ and R22 due to Structure of Heat Exchanger)

  • 하옥남;하경수;이승재;정송태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.60-65
    • /
    • 2005
  • Nowadays HCFCs refrigerant are restricted because it cause depletion of ozone layer. However, natural gases such as ammonia as an organic compound, propane and propylene as hydrocarbon are easy and cheap to obtain as well as environmental. Accordingly, this experiment apply the $NH_3$ and R22 to study the performance characteristic from the superheat control and compare the energy efficiency of two refrigerants from the high performance. The condensing pressure of refrigeration system is increased from 15bar to 16bar and degree of superheat is increased from 0 to $10^{\circ}C$ at each condensing pressure. As the result of experiment, when comparing the each COP, we knew the $NH_3$ is suitable as the alternative refrigerant of the R22.

  • PDF

A/C 콘덴서를 포함한 차량냉각 성능예측에 관한 연구 (A Study on Prediction Method of Vehicle Cooling Performance with A/C Condenser)

  • 이상호;박정원
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.51-60
    • /
    • 2002
  • An analysis method to predict performance of a vehicle cooling system which is composed of radiator, A/C condenser, cooling fan, and etc. is suggested. Air flow through the heat exchanger system and heat rejection rate which dominate the cooling performance are analyzed. Heat transfer with A/C refrigerant phase change is also considered in the analysis. Some predicted results are compared with experimental data for various operating conditions. This evaluation procedure will be useful for the design of optimal vehicle cooling system.

경사진 헬리컬 코일형 가스냉각기의 관형상에 따른 $CO_2$ 냉각 열전달 특성 (Cooling Heat Transfer Characteristics of $CO_2$ on Tube Geometry of Inclined Helical Coil Type Gas Coolers)

  • 손창효;오후규
    • 설비공학논문집
    • /
    • 제19권9호
    • /
    • pp.640-646
    • /
    • 2007
  • The cooling heat transfer coefficient of $CO_2$ (R-744) for tube and coil diameter (CD), inclined angle of tube and coil pitch of inclined helical coil type copper tubes were investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube of 2.45 and 4.55 mm inner diameter (ID). The refrigerant mass flukes were varied from 200 to 800 [$kg/m^2s$] and the inlet pressures of gas cooler were 7.5 to 10.0 [MPa]. The heat transfer coefficients of $CO_2$ in inclined helical coil tube with 2.45 mm ID are $5{\sim}10.3%$ higher than those of 4.55 mm. The heat transfer coefficients of 41.35 mm CD are $8{\sim}32.4%$ higher than those of 26.75 mm CD. Comparison between $45^{\circ}\;and\;90^{\circ}$ of coil angle, the heat transfer coefficients of $45^{\circ}$ are higher than those of $90^{\circ}$. For coil pitch of gas cooler, the heat transfer coefficients of inclined helical coil gas cooler with coil pitch of 5 mm are similar to those of 10 and 15 mm.