• 제목/요약/키워드: Refrigerant Mixtures

검색결과 103건 처리시간 0.02초

저온용 대체냉매의 성능 특성 연구 (Performance Characteristics Study on an Alternative Refrigerant in Low Temperature Applications)

  • 신정섭;김만회
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.462-469
    • /
    • 2016
  • This paper presents the results of thermodynamic cycle analysis and performance tests of alternative mixtures in low temperature applications. Two near-azeotropic binary mixtures R-152a/R-1270 (35:65 by wt.%) and R-290/E170 (35:65 by wt.%) are considered in this study. They have zero ODP (Ozone Depletion Potential) and much lower GWP (Global Warming Potential) than R-404A which is an alternative of R-502. Refrigeration cycle characteristics such as cooling capacity, coefficient of performance, suction and discharge pressures and temperatures are compared to those for the baseline refrigerants (R-502 and R-404A) cycles. The performance tests are conducted at the evaporation and condensation temperatures of $5^{\circ}C$ and $45^{\circ}C$, subcooling and superheating temperatures of $5^{\circ}C$, respectively. Performance comparisons between baseline and alternative refrigerants are conducted on the same cooling capacity. The system performance of newly proposed refrigerant mixtures show promising results.

순수 및 혼합냉매의 원관내 증발열전달 실험 (Experimental study on convective boiling heat transfer for pure refrigerants and refrigerant mixtures in a horizontal tube)

  • 신지영;김민수
    • 대한기계학회논문집B
    • /
    • 제20권2호
    • /
    • pp.730-740
    • /
    • 1996
  • Boiling heat transfer coefficients of pure refrigerants (R22, R32, R134a, R125, R290, and R600a) and refrigerant mixtures (R32/Rl34a, R290/ R600a, and R32/R125) are measured experimentally and compared with Chen's correlation. The test section is a seamless stainless steel tube with inner diameter of 7.7mm and uniformly heated by applying electric current directly to the tube. Heat fluxes range from 10 to 30kW$^2$. Mass fluxes are set to 424 ~ 742kg/m$^{2}$s for R22, R32, R134a, R32/R134a, and R32/Rl25 ; 265 ~ 583kg/m$^{2}$s for R290, R600a, and R290/R600a. Heat transfer coefficients depend strongly on heat flux at a low quality region and become independent as quality increases. Convective boiling term in the Chen's correlation predicts experimental data of the pure refrigerants fairly well (relative error of 12.1% for the data of quality over 0.2). The correlation for pure substances overpredicts the heat transfer coefficients for nonazeotropic refrigerant mixtures.

대체냉매의 2중관 응축기 열 및 물질전달과 성능평가 (Heat and Mass Transfer Characteristics and Performance Evaluation of a Double-Tube Condenser for an Alternative Refrigerant)

  • 이상무;박병덕;소산번
    • 설비공학논문집
    • /
    • 제14권6호
    • /
    • pp.468-476
    • /
    • 2002
  • This paper deals with heat and mass transfer characteristics and performance evaluation of a counter flow double-tube condenser for a multi-component refrigerant mixture. The local heat and mass transfer characteristics of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a are evaluated for a counter flow double-tube condenser cooled by water. Then, the local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, heat flux and condensation mass flux are obtained. The heat exchange performance for ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a on the total pressure drop and the heat transfer characteristics are also compared with those for R404A, R410A, R502, R22, R32, Rl23 and R134a.

열전달 촉진관에서 2원 혼합냉매의 외부 응축열전달계수 (Condensation Heat Transfer Coefficients of Binary Refrigerant Mixtures on Enhanced Tubes)

  • 김경기;서강태;채순남;정동수
    • 설비공학논문집
    • /
    • 제14권2호
    • /
    • pp.161-167
    • /
    • 2002
  • In this study, external condensation heat transfer coefficients (HTCs) of two non-azeotropic refrigerant mixtures of HFC32/HFC134a and HF0134a/HCF0123 at various compositions were measured on both low fin and Turbo-C enhanced tubes of 19.0 mm outside diameter All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3- 8 K. Test results showed that HTCs of the tested mixtures on the enhanced tubes were much lower than the ideal values calculated by the mass fraction weighting of the pure compo- nents'HTCs. Also the reduction of HTCs due to the diffusion vapor film was much larger than that of a plain tube. Unlike HTCs of pure fluids, HTCs of the mixtures measured on enhanced tubes increased as the wall subcooling increased, which was due to the sudden break up of the vapor diffusion film with an increase in wall subcooling. Finally, heat transfer enhancement ratios for mixtures were found to be much lower than those of pure fluids.

혼합냉매의 열역학적 물성치 추산에 관한 연구 (Studies on the Estimation of Theromodynamic Properties for the Non-Azeotropic Refrigerant Mixtures)

  • 김민수;김동섭;노승탁;김욱중;윤재호
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1337-1348
    • /
    • 1990
  • 본 연구에서는 Peng-Robinson 상태 방정식을 기본으로 하여 먼저 단일 성분의 냉매에 대한 열역학적 물성치를 구한 뒤 그 정확도를 검증하고, 동일한 형태의 상태식 과 적절한 혼합 법칙을 통해 혼합냉매의 기액 평형 상태와 냉동 및 열펌프 사이클 해 석에 필요한 엔탈피와 엔트로피 등의 열역학적 물성치를 추산하고자 한다.단일 성 분의 냉매로서는 R13B1, R22, R12, R152a, R114를 택하였고, 혼합냉매로서는 앞의 단 일성분 냉매를 혼합한 것 중에서 그 기초적인 실험 자료가 아미 알려진 R13B1/R114, R22/R114, R12/R114 R152a/R114, R13B1/R152a 및 R13B1/R12를 택하였다. 이는 추후 상이한 냉매를 단일식으로 나타낼 수 있는 대응상태의 원리를 사용한 열물성 계산의 기반이 될 수 있을 것이다.

2중 관형 열교환기내 비공비혼합냉매 R-22+R134a의 응축열전달 특성에 관한 연구 (Condensation Heat Transfer Characteristics of Non-Azeotropic Refrigerant Mixture(NARMs) Inside Double Pipe Heat Exchangers)

  • 노건상;오후규;권옥배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.91-100
    • /
    • 1996
  • Experimental results for forced convection condensation of non-azeotropic refrigerant mixtures inside a horizontal smooth tube are presented. The mixtures of R-22+R-134a and pure refrigerants R-22 and R-134a are used as the test fluids and a double pipe heat exchanger of 7.5mm ID and 4800mm long inside tube is used. The range of parameters are 100-300kg/h of mass flow rate, 0-1.0 of quality, and 0, 33, 50, 67, and 100 weight percent of R-22 mass fraction in the mixtures. The heat flux, vapor pressure, vapor temperature and tube wall temperature were measured. Using the data, the local and average heat transfer coefficients for the condensation have been obtained. In the same given experimental conditions, the liquid heat transfer coefficients for NARMs were considerally lower than that of the pure refrigerant of R-22 and R-134a. Local heat transfer characteristics for NARMs were different from pure refrigerant R-22 and R-134a. In some regions, local heat transfer coefficients for NARMs were increased in the following order ; Bottom$\rightarrow$Top$\rightarrow$Side. The condensation heat transfer coefficients for NARMs increased with mass velocity, heat flux, and quality, but were considerably lower than that of pure refigerant R-22 and R-134a.

  • PDF

R22/R142b 혼합냉매를 사용한 열펌프의 성능 (Experimental Study on the Performance of Heat Pump Using Refrigerant Mixture R22/R142b)

  • 김민수;장세동;노승탁
    • 설비공학논문집
    • /
    • 제4권1호
    • /
    • pp.33-47
    • /
    • 1992
  • Experimental investigation on the performance of a heat pump system using refrigerant mixtures is done. The condenser and the evaporator are double pipe heat exchangers of counter flow type and the compressor is driven by a variable speed motor. The refrigerant mixture used in the experiment is R22/R142b. Experiments are performed by changing the compressor speed, composition on ratio of mixture, and the average temperatures of condenser and evaporator. The compressor work, heating capacity and the coefficient of performance are calculated. Results show that the heating capacity can be changed by varying the mass flow rate of refrigerant mixtures to meet the heating load. It is shown that the capacity control by changing the composition ratio is more effective than by changing the compressor speed. Under the condition where the external conditions are fixed and the heating loads are equal, the coefficient of performance has its maximum value near 50 : 50 mass fraction of the refrigerant mixture in this study.

  • PDF

외경 5mm 수직 평활관 및 마이크로핀관 내의 이산화탄소/프로판 혼합냉매의 증발열전달 특성에 관한 실험적 연구 (An Experimental Study on the Evaporative Heat Transfer Characteristics of $CO_2$/Propane Mixtures Flowing Upward in Vertical Smooth and Micro-fin Tubes with an Outer Diameter of 5 mm)

  • 조진민;김민수
    • 설비공학논문집
    • /
    • 제21권4호
    • /
    • pp.243-251
    • /
    • 2009
  • Refrigerant mixtures provide an opportunity to adjust their properties to fit design criteria and a possibility to create new blends that can improve heat transfer characteristics. Therefore, mixture of $CO_2$ and propane is chosen which may be a promising refrigerant and has good environmental compatibility. This paper presents measured heat transfer coefficient data during evaporation process of $CO_2$/propane mixtures flowing upward in vertical smooth and. micro-fin tubes. Smooth and micro-fin tubes with outer diameters of 5 mm and length of 1.44in were selected as test tubes. The tests were conducted at mass fluxes of 212 to $656kg/m^{2}s$, inlet temperatures of -10 to $30^{\circ}C$, heat fluxes of 15 to $60\;kW/m^2$ and for several compositions (75/25, 50/50, 25/75 wt%). Among $CO_2$/propane refrigerant mixtures, the heat transfer characteristics are much better than that of any compositions when the composition is 75/25 (wt%).

R22 대체냉매의 성능 평가 (Performance evaluation of R22 alternative refrigerants)

  • 송용재;박봉진;정동수;김종보
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.292-302
    • /
    • 1998
  • In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R143a, R152a, and R1270(Propylene) were tested in a breadboard heat pump in an attempt to replace R22 used in most of the residential air conditioners and heat pumps. The heat pump was of 1 ton capacity and water was employed as the secondary heat transfer fluids. All tests were conducted under ARI test A condition. Ternary mixtures composed of R32, R125, and R134a were shown to have 4∼5% higher COP and capacity than R22 and hence they seem to be very promising candidates to replace R22. On the other hand, ternary mixtures containing R125, R134a, and R152a have lower COP and capacity than R22. R32/R134a binary mixtures show a 7% increase in COP and have the similar capacity to that of R22 and hence they are also good candidates to replace R22. Special care must be exercised when a suction line heat exchanger is used with these mixtures in air conditioners. Finally, the compressor discharge temperatures of all mixtures tested were lower than those of R22 by 15.g∼34.7t, which indicates that these mixtures would offer better system reliability and longer life time than R22.

  • PDF

A Study on Autocascade Refrigeration System Using Carbon Dioxide and R134a Mixture

  • Park, Soo-Nam;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권1호
    • /
    • pp.39-49
    • /
    • 2001
  • Investigation of the performance of an autocascade refrigeration system using the refrigerant mixtures of R744 (carbon dioxide) and R134a (1,1,1,2-tetrafluoroethane) has been carried out by simulation and experiment. Cycle simulation using a constant UA model in heat exchangers has been performed for R744/134a mixtures of the compositions ranging from 10/90 to 30/70 by weight. Variations of mass flow rate of refrigerant, compressor work, refrigeration capacity and COP with respect to mass fraction of R744/134a mixture were presented. Performance test has been executed in the autocascade refrigeration system by varying secondary fluid temperatures at evaporator and condenser inlets. Experimental results match quite well with those obtained from the simulation.

  • PDF