• 제목/요약/키워드: Refrigerant Cycle Simulation

검색결과 82건 처리시간 0.02초

비단열 모세관의 영향을 고려한 냉동 사이클 시뮬레이션 (Simulation of the Refrigeration Cycle Equipped with a Non-Adiabatic Capillary Tube)

  • 박상구;손기동;정지환;김윤수
    • 설비공학논문집
    • /
    • 제21권3호
    • /
    • pp.131-139
    • /
    • 2009
  • The simulation of refrigeration cycle is important since the experimental approach is costly and time-consuming. The present paper focuses on the simulation of a refrigeration cycle equipped with a capillary tube-suction line heat exchanger(SLHX), which is widely used in small vapor compression refrigeration systems. The present simulation is based on fundamental conservation equations of mass, momentum, and energy. These equations are solved through an iterative process. The non-adiabatic capillary tube model is based on homogeneous two-phase flow model. This model is used to understand the refrigerant flow behavior inside the non-adiabatic capillary tube. The simulation results show that both of the location and length of heat exchange section influence the coefficient of performance (COP).

액화천연가스 냉열을 활용한 암모니아 냉동 사이클의 추산 (Estimation of the Ammonia Refrigeration Cycle Using LNG Cold Heat)

  • 노상균
    • 한국수소및신에너지학회논문집
    • /
    • 제29권4호
    • /
    • pp.357-362
    • /
    • 2018
  • In this study, computer simulation and optimization works have been performed for a refrigeration cycle using ammonia as a refrigerant and also how much power was saved when the liquefied natural gas cold heat is replaced for the refrigeration cycle. PRO/II with PROVISION release 10.0 from Schneider electric company was used, and Peng-Robinson equation of the state model was selected for the modeling of the refrigeration cycle and LNG cold heat utilization process.

삼중효용 흡수사이클의 성능특성 평가 (evaluation of Performance Characteristic on Triple Effect Absorption Cycle)

  • 권오경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.782-791
    • /
    • 1998
  • This paper presents a computer simulation of five types of triple effect absorption cycles employ-ing the refrigerant absorbent combinations of NH3/LiNO3 low-pressure type NH3/LiNO3+H2O/LiBr binary two-stage type series flow cycle and two types of parallel flow cycle for H2O/LiBr. The absorption systems is investigated through cycle simulation to obtain the system characteristics with the cooling water inlet temperature approach temperature of absorber loss temperature of absorber and chilled water outlet temperature. The most important characteristic temperature of absorber and chilled water outlet temperature. The most important characteristic of NH3/LiNO3 low-pressure type and a NH3/LINO3+H2O/LiBr binary two-stage type is that it obtains a coefficient of performance higher than the sum of the performance coefficients of its part operating independently. As a result of this analysis the optimum designs and operating conditions were determined based on the operating conditions and the coefficient of performance.

  • PDF

순수한 프로판 냉매를 사용한 액화석유가스 냉동사이클의 모사에 관한 연구 (A Study on the Simulation of LPG Refrigeration Cylcle Using Pure Propane Refrigerant)

  • 조정호
    • 한국가스학회지
    • /
    • 제10권1호
    • /
    • pp.38-42
    • /
    • 2006
  • 본 연구에서는 순수한 프로판 냉매를 사용하여 액화석유가스(LPG)를 액화 및 냉동 저장할 수 있는 냉동 사이클에 대한 모사기법을 소개하였다. 프로판을 액화시키기 위한 2차 냉매로써는 물을 사용하였다. 전체 냉동 사이클의 모사를 위한 열역학 모델로서는 Peng-Robinson 상태방정식을 사용하였다. 프로판 성분과 LPG구성성분의 증기압의 좀 더 정확한 추산을 위하여 Twu 등이 제안한 새로운 alpha function을 사용하였다. 또한 액상의 밀도를 정확하게 추산하기 위해서는 Peng-Robinson상태방정식 대신에 API모델식을 사용하였다. 모사를 위하여 Simulation Science사의 PRO/II with PROVISION version 7.1 범용성 화학공정 모사기를 사용하였다 본 연구를 통하여 국내에서 실제로 가동되고 있는 LPG 저장을 위한 냉동 사이클을 성공적으로 모사할 수 있었다.

  • PDF

냉장고 사이클 특성에 미치는 열손실량의 영향 (Effect of heat Leak on Cycle Characteristics of Refrigerator)

  • 신진규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.871-879
    • /
    • 1998
  • The refrigerator consists of many components such as compressor condenser expansion valve evaporator and the cabinet which filled by urethane foam. In this paper the heat leakage of refriger-ator is measured by the new experiment method which is different from a present method, The devi-ation of the UA(overall heat transfer coefficient times area) between the simulation and experiments is about 7-8%. Using the modeling of various components of refrigeration system a performance analysos of CFC 12 and HFC 134a is performed numerically on the UA. As the results of this study according to increase the heat leakage the refrigeration load and mass flow rate of refrigerant are increased. And the increase of the mass flow rate results in the increase of the condensing and evapo-rating temperature. Therefore according to increase of the heat leakage the COP leads to increase because the increase of refrigeration capacity is larger than the increase if compressor power.

  • PDF

HFC-134a 자동차용 공조시스템의 열역학적 사이클 특성에 관한 연구 (A Study of Thermodynamic Cyclic Characteristics of HFC-134a Automotive Air-Conditioner System)

  • 이규현;원종필
    • 한국자동차공학회논문집
    • /
    • 제2권1호
    • /
    • pp.51-64
    • /
    • 1994
  • Analytical study on the thermodynamical cyclic behabiour and characteristics of HFC-l34a refrigerant for automotive air conditionser system for the replacement of existing CFC-12 has been carried out in this paper through development of system performance simulation program, expecially in the view point of system design considerations. The results indicate that HFC-l34a system will give a greater refrigerating capacity than CFC-12 if appropriate engineering measures such as proper codensers, flow controllers, etc., taken for certain operating conditions. The results, however, also show that the operating power for compression process increases over entire temperature range as a result of decreasing volumetric efficiency due to larger specific volume and increased discharging pressure. The present study results indicate that proper selection of condensing and evaporating temperature plus refrigerant control is very important performance factor to have better COP in the HFC-134a system design.

  • PDF

혼합냉매를 사용한 열펌프 시스템의 성능과 열전달 특성 (Performance and Heat Transfer Characteristics of Heat Pump System Using Refrigerant Mixtures)

  • 김동섭;신지영;노승탁
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.360-369
    • /
    • 1992
  • A heat pump system is constructed to evaluate its performance and heat transfer characteristics with mixtures of R22/R142b as working fluids. The heat transfer in the evaporator and the overall performance are measured and analyzed in terms of the compositions and relevant variables. Possibility of capacity modulation by changing composition is observed without degradation of heat transfer coefficients and coefficient of performance. The cooling capacity is varied continuously within 200 percent based on minimum capacity at constant compressor speed. For similar cooling capacity, COP is improved by mixing two refrigerants and shows maximum value at 60% mass fraction of R22. Average heat transfer coefficients of mixtures decrease in comparison with pure refrigerants at similar cooling capacity and mass flow rate. However, the overall heat transfer coefficients decrease moderately. A cycle simulation is performed in order to manifest the advantages of using refrigerant mixtures, considering experimentally observed heat transfer characteristics.

  • PDF

열펌프 건조기의 기본 설계를 위한 건조 성능 해석 (Drying Performance Simulation for the Basic Design of a Heat Pump Dryer)

  • 이공훈;김욱중
    • 대한기계학회논문집B
    • /
    • 제31권10호
    • /
    • pp.860-867
    • /
    • 2007
  • Heat pump drying has a great potential for energy saving due to its high energy efficiency in comparison with conventional air drying. In the present study, the performance simulation for the basic design of a heat pump dryer has been carried out. The simulation includes one-stage heat pump cycle, simple drying process using the drying efficiency. As an example, the heat pump cycle with Refrigerant 134a has been investigated. For the operating conditions such as the average temperature of the condenser, the heat rate released in the condenser, the flow rate of drying air, and drying efficiency, the simulation has been carried out to figure out the performance of the dryer. The parameters considered in the design of the dryer are COP, MER, SMER, the rate of dehumidification, the temperature and humidity of drying air and those parameters are compared for different conditions after carrying out the simulation.

Reverse Brayton 사이클과 Claude 사이클 기반 LNG 재액화 공정의 동특성 운전성능 비교 (Comparison of Dynamic Operation Performance of LNG Reliquefaction Processes based on Reverse Brayton Cycle and Claude Cycle)

  • 신영기;서정아;이윤표
    • 설비공학논문집
    • /
    • 제20권12호
    • /
    • pp.775-780
    • /
    • 2008
  • A dynamic model to simulate LNG reliquefaction process has been developed. The model was applied to two candidate cycles for LNG reliquefaction process, which are Reverse Brayton and Claude cycles. The simulation was intended to simulate the pilot plant under construction for operation of the two cycles and evaluate their feasibility. According to the simulation results, both satisfy control requirements for safe operation of brazed aluminum plate-fin type heat exchangers. In view of energy consumption, the Reverse Brayton cycle is more efficient than the Claude cycle. The latter has an expansion valve in addition to the common facilities sharing with the Reverse Brayton cycle. The expansion valve is a main cause to the efficiency loss. It generates a significant amount of entropy associated with its throttling and increases circulation flow rates of the refrigerant and power consumption caused by its leaking resulting in lowered pressure ratio. It is concluded that the Reverse Brayton cycle is more efficient and simpler in control and construction than the Claude cycle.

Comparison of Operation Performance of LNG Reliquefaction Process according to Reverse Brayton Cycle and Claude Cycle

  • Shin, Young-Gy;Seo, Jung-A;Lee, Yoon-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권4호
    • /
    • pp.135-140
    • /
    • 2009
  • A dynamic model to simulate LNG reliquefaction process has been developed. The model was applied to two candidate cycles for LNG reliquefaction process, which are Reverse Brayton and Claude cycles. The simulation was intended to simulate the pilot plant under construction for operation of the two cycles and evaluate their feasibility. According to the simulation results, both satisfy control requirements for safe operation of brazed aluminum plate-fin type heat exchangers. In view of energy consumption, the Reverse Brayton cycle is more efficient than the Claude cycle. The latter has an expansion valve in addition to the common facilities sharing with the Reverse Brayton cycle. The expansion valve is a main cause to the efficiency loss. It generates a significant amount of entropy associated with its throttling and increases circulation flow rates of the refrigerant and power consumption caused by its leaking resulting in lowered pressure ratio. It is concluded that the Reverse Brayton cycle is more efficient and simpler in control and construction than the Claude cycle.