• Title/Summary/Keyword: Refrigerant Compressor

Search Result 352, Processing Time 0.029 seconds

냉동,공조용 로터리 콤프레서의 윤활 특성 제2보;베인선단부의 부분 탄성유체윤활해석 (The Lubrication Characteristics of Rotary Compressor for refrigeration & air-conditioning ( Part II ; Analysis of partial elastohydrodynamic lubrication on vane tip ))

  • 김진문;조인성;백일현;정재연
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제24회 춘계학술대회
    • /
    • pp.133-141
    • /
    • 1996
  • The rolling piston type rotary compressor has become one of the most successful types because of its compactness and high-speed operation. The analysis described here is part of a research program directed toward maximising these advantages in refrigerant compressors. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressors. Therefore, theoretical investigation of the lubrication characteristics of rotary compressor for refrigeration & air-conditioning system is studied. And the Newton-Raphson method is used for the EHI. analysis between vane and rolling piston in the rotary compressor. The results show that the rotational speed of shaft and the discharge pressure have an important effect upon the friction force and the energy loss between vane and rolling piston. This results give important basic data for the further lubrication analysis and design of the rotary compressor.

  • PDF

Modification of acceleration signal to improve classification performance of valve defects in a linear compressor

  • Kim, Yeon-Woo;Jeong, Wei-Bong
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.71-79
    • /
    • 2019
  • In general, it may be advantageous to measure the pressure pulsation near a valve to detect a valve defect in a linear compressor. However, the acceleration signals are more advantageous for rapid classification in a mass-production line. This paper deals with the performance improvement of fault classification using only the compressor-shell acceleration signal based on the relation between the refrigerant pressure pulsation and the shell acceleration of the compressor. A transfer function was estimated experimentally to take into account the signal noise ratio between the pressure pulsation of the refrigerant in the suction pipe and the shell acceleration. The shell acceleration signal of the compressor was modified using this transfer function to improve the defect classification performance. The defect classification of the modified signal was evaluated in the acceleration signal in the frequency domain using Fisher's discriminant ratio (FDR). The defect classification method was validated by experimental data. By using the method presented, the classification of valve defects can be performed rapidly and efficiently during mass production.

혼합 냉매를 이용한 극저온 J-T 냉동기 관한 실험적 연구 (An Experimental Study of The J-T Cryocooler with Mixed Refrigerant)

  • 이경수;정상권
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권1호
    • /
    • pp.64-68
    • /
    • 2001
  • An experimental study on the Joule-Thomson cryocooler with the mixed refrigerant (MR) is described in this paper, J-T refrigeration experiment was performed with a single stage regular air-conditioning compressor The mixed refrigerant in the experiment was composed of 75% mol fraction of $N_2$. 30% moi fraction of CH$_4$. 30% moi fraction of $C_2$H$_{6}$. 10% mot fraction of $C_3$H$_{8}$ and 15% mot fraction of iso-C$_4$H$_{10}$. Oil mist in the MR stream could be eliminated completely by the glass microfiber filter. Since a single stage compressor that had been designed thor R22 is not appropriate for high Pressure ratio of the mixed refrigerant especially during the transient period. two modifications were incorporated to regular J-T refrigeration cycle. First. a Portion of the MR was by-passed at the inlet of the heat exchanger and transferred directly to 7he suction of the compressor in the modified system. Second, a buffer volume was Prepared to change the mass flow rate of refrigerant. The pressure ratio in J-T expansion device was relieved at the beginning of the operation due to the by-Pass scheme. but it gradually decreased during the transient Process as some of the MR component condensed at low temperature. The buffer volume at the suction side was used to increase the MR gas density in the system after the transient cool-down period. Form the experiment with the modified system, the refrigerator could reach the lowest temperature of -152$^{\circ}C$ without cooling load. and about -15$0^{\circ}C$ with 5 W of cooling load . . . .

  • PDF

재열기를 사용한 고성능 VI 사이클 열펌프의 난방 성능 특성에 관한 연구 (A Study on the Characteristics of Heating Performance of High-Performance Heat Pump with VI cycle using Re-Heater)

  • 이진국;최광환
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.69-75
    • /
    • 2015
  • In this study, the characteristics of heating performance of a high-performance air-cooled heat pump with vapor-injection(VI) cycle using re-heater was investigated experimentally. Devices used in the experiment is consist of a VI compressor, condenser, oil separator, refrigerant (economizer outlet refrigerant) re-heater, economizer, evaporator. And R410A was used as a working fluid. The experiment was conducted with two cycles(cycles A and B) for investigating heating performance. In case of cycle B, heat exchange was conducted by re-heater between outlet refrigerant of compressor and suction refrigerant of the VI system(Fig.1, re-heater). But the re-heater was not used in case of cycle A. As a result of this experiment, discharge temperature of refrigerator in compressor was shown higher value, when the cycle B was conducted, because of the heat exchange between suction refrigerant of VI cycle and outlet refrigerant of compressor in the re-heater than cycle A that was not use re-heater. it means that liquid hammer and the decrement of heating performance can be decreased by using re-heater. Also, Heating coefficient of performance(COPh) was shown about 2.98 in Cycle B which was 4% higher than Cycle A and from these results, It was confirmed that the improvement of the heating performance of heat pump with VI cycle can be achieved by applying re-heater.

나노 오일을 이용한 압축기 습동부 재질의 윤활 특성 향상에 관한 연구 (Study on Improvement of Lubrication Characteristics for the Material of Compressor Friction Parts with Nano-oil)

  • 김성춘;김경민;황유진;박영도;이재근
    • 설비공학논문집
    • /
    • 제21권10호
    • /
    • pp.559-563
    • /
    • 2009
  • Performance of refrigerant oil at the thrust-bearing and at the journal-bearing of a scroll compressor is a significant factor. This paper presents the friction and anti-wear characteristics of nano oil with a mixture of a refrigerant oil and carbon nano particles. The characteristics of friction and anti-wear using nano-oil is evaluated using the disk on disk tester for measuring friction surface temperature and the coefficient of friction. The average friction coefficient of nano-oil was reduced by 60% compared to raw oil under 600 N and 1,000 rpm. It is believed that the interaction of nano particles between surfaces can be improved the lubrication in the friction surfaces. Worn surfaces of frictional specimen were also investigated by the optical and atomic force microscopy. Conclusively, it is expected that wear and friction coefficient of compressor can be reduced by alignment applying nano-oil as refrigerant oil.

가열기가 내장된 냉매오일 분리기의 성능 고찰 (Performance Analysis of the Refrigerant oil separator with a build-in heater)

  • 김종열
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.41-46
    • /
    • 2011
  • Refrigerant oil reduces friction between piston and cylinder of compressor and is normally hard to mix or dissolve in refrigerant. Oil separator deprives refrigerating oil from mixed solution of refrigerant and refrigerant oil. Sometimes much machine oil is carried into an evaporator and is applied to surface of the evaporator, and then disturbs heat transfer through it. Well-made oil separator helps refrigerating system stable and evaporator sustain full capacity. In this paper, new oil separate with different way to structure is suggested and tested. As result the new separates is 13% higher at 0C with 10% mixture and 6% higher at 0C with 20% mixture.

고온용 밀폐형 왕복동 압축기에서 탄화수소계 혼합냉매 적용 (The application of hydrocarbon refrigerant mixtures in a hermetic reciprocating compressor for high back pressure conditions)

  • 김기문;박희용
    • 설비공학논문집
    • /
    • 제11권2호
    • /
    • pp.262-269
    • /
    • 1999
  • The application of hydrocarbon refrigerant mixtures in a hermetic reciprocating compressor for dehumidifier is investigated. The selected refrigerants are R12, R134a, HC-Blend (R290/R600a), CX(R152a/R600a) and OS-l2a. Both theoretical and experimental investigations have been performed for the selected refrigerants. The test results of hydrocarbon refrigerants have been compared to traditional refrigerant(R12) and R134a. The results show that hydrocarbon refrigerant mixtures(HC-Blend, CX and OS-l2a) are very good alternatives in the refrigeration system for R12 and R134a.

  • PDF

공진특성을 고려한 냉동/공조용 횡자속 선형압축기의 설계 (The Design of a Linear Compressor Based on the Resonance Characteristics for the Air Conditioner)

  • 홍용주;박성제;김효봉
    • 연구논문집
    • /
    • 통권34호
    • /
    • pp.39-46
    • /
    • 2004
  • The compressors in the air conditioner have the role of the pressurization and circulation of the refrigerant. The hermetic reciprocating compressors driven by rotary motor have been used for the air conditioner. The linear compressor has very simple structure and enhancement in the efficiency in comparison to that of conventional reciprocating compressor. The linear compressors are widely used for the small cryogenic refrigerator (below 1 kW), such as the Stirling refrigerator and pulse tube refrigerator. In the cryogenic application, the pressure ratio of the linear compressor is below 1.5, but the linear compressor for the air conditioner should overcome the high pressure ratio and the large pressure difference between the each sides of the piston. The resonance characteristics of the linear compressor has the significant impacts on the power consumption. To minimize the power consumption, the linear compressor should be operated at the resonance point. In the resonance characteristics, the role of the mechanical and gas spring should be considered. In present study, the cycle of the analysis of the vapor compression refrigeration cycle with the different refrigerants (R134a, R4l0a, R600a) and the designs of the linear compressor are performed. The effects of the stiffness of the mechanical spring on the electromagnetic forces would be discussed. Finally, the results show the design specification of the linear compressor for the air conditioner.

  • PDF

인버터 로터리 압축기 오일 토출량 산정의 실험적 고찰 (An Experimental Study on the Estimation of Oil Discharge Rate from Inverter Rotary Compressor)

  • 신현석;변순석;태상진;문제명;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제14권3호
    • /
    • pp.28-32
    • /
    • 2011
  • The inverter rotary compressor discharges refrigerant and compressor oil in air-conditioning systems. The compressor oil which discharged form compressor decreases the efficiency of heat exchanger and affects the compressor operation. Recently, several studies are in progress for reducing the compressor oil. Before the reduction of compressor oil discharge rate, the quantitative measurement and evaluation method are required. In order to cope with this requirement we have developed the measurement technic of oil discharge rate. The reliability assessment was carried out approximately 0.1% of the errors with compressor performance indicators. The acceptable errors were to ensure the reliability of measurement technic. In the experiment results at several conditions, The oil discharge rate of heating operation has been confirmed average 3.7 times more than cooling operation. In this study the evaluation method and the experimental results of oil discharge rate in air-conditioning systems are presented with various operating conditions.

모세관 길이와 관경 변화에 따른 R-1270의 성능특성 (System Performance for Length and Diameter of Capillary Tube using R-1270)

  • 이호생;김현우;최원재;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.646-652
    • /
    • 2009
  • Experimental results for performance characteristics of HCs refrigerant R-1270 and HCFC refrigerant R-22 during refrigeration system using capillary tube are presented. The system consists of compressor, condenser, capillary tube, evaporator and peripheral devices. Length and diameter of capillary tube are varied for this investigation. The refrigerant mass flow increased as the diameter of capillary tube increased and the length of capillary tube decreased. A refrigeration capacity and compressor work of R-1270 in same length and diameter of capillary tube showed the higher values than those of R-22. A coefficient of performance showed the highest value when the length and diameter of capillary tube are 105 cm and 1.8 mm in this experimental conditions.