• Title/Summary/Keyword: Refrigerant Compressor

Search Result 352, Processing Time 0.029 seconds

Modelling and Simulation of Rotary Compressor in Refrigerator (냉동기용 로터리 압축기의 모델링 및 시뮬레이션)

  • Park, Min-Woo;Chung, Youn-Goo;Park, Kyoung-Woo;Pak, Hi-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.39-49
    • /
    • 2000
  • This paper presents the modeling approach that can predict transient behavior of rotary compressor. Mass and energy conservation laws are applied to the control volume, real gas state equation is used to obtain thermodynamic properties of refrigerant. The valve equation is solved to analyze discharge process also. Dynamic analysis of vane and roller is carried out to gain friction work. From the above modeling, the performance of rotary compressor with radial clearance and friction loss is investigated numerically. The performance of each refrigerant is estimated, respectively by applying R12, R134a, and R290/ R600a mixture.

A study on the Modulated Scroll Compressor by Bypass Method (바이패스방식을 이용한 용량가변 스크롤 압축기에 관한 연구)

  • Kim, Cheol-Hwan;Shin, Dong-Koo;Park, Hong-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.693-696
    • /
    • 2003
  • Hermetic Compressor circulates refrigerant with constant flow rate regardless of operation condition. so, at the operating condition requiring low cooling capacity, too much refrigerant flow deteriorates seasonal energy efficiency ratio(SEER). In this reason, modulated compressor is needed to improve SEER. Among many types of modulated compressor, non-inverter type modulated compressor is required for its low cost and easy to development. In the modulated scroll compressor by bypass method, EER steeply decreases for many loss like re-compression, changes of volume ratio, decrease of motor efficiency by torque variation. So. the range of modulation ratio for optimized SEER must be selected accompany with air conditioner set development.

  • PDF

A Study of Failure Examples for Refrigerant Gas Leakage in Automotive Air Conditioner System (자동차 에어컨 냉매 가스 누설에 대한 고장사례 고찰)

  • Lee, Il Kwon;Kook, Chang Ho;Moon, Hak Hoon;You, Chang Bae
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.10-15
    • /
    • 2016
  • This paper is to analyze and study the failure examples of refrigerant gas in automotive air conditioner. The first example, the air conditioner compressor continually operated that the refrigerant was leaked in air conditioner system. By lubrication shortage, the piston was partially sticked on cylinder of air conditioner compressor inner part. This was caused the phenomenon of engine operation trouble by load increasing with engine rpm variation during engine running. The second example, it sought the fact that the air conditioner refrigerant gas was leaked from air conditioner compressor to condenser high pressure pipe toward rear air conditioner checking with the lines of air conditioner. The third example, the refrigerant gas of air conditioner found that was leaked imperceptible from condenser inner by crack that was generated on the fins of air conditioner condenser. Therefore, the air conditioner system that maintain the air conditioner by decreasing the in-car temperature must meticulously manage to not leak the air conditioner refrigerant gas.

AERODYNAMIC DESIGN AND NUMERICAL ANALYSIS OF PROPANE REFRIGERANT CENTRIFUGAL COMPRESSOR FOR LNG PLANT (LNG 플랜트용 프로판 냉매 압축기 공력설계 및 수치해석)

  • Park, J.H.;Lee, W.S.;Kang, K.J.;Shin, Y.H.;Lee, Y.P.;Kim, K.H.;Chung, J.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.167-173
    • /
    • 2010
  • In this study, flow structure in a three-stage centrifugal compressor for LNG Plant with the refrigerant, Propane, was numerically investigated at the design point of the compressor using a commercial code. Flow characteristics in the passages of impeller and vaneless diffuser were analyzed in detail including velocity vector, Mach number and pressure contours in blade spanwise and meridional plane for each stage. The estimation on the one-dimensional output from the preliminary design and three-dimensional shape of the impeller blade was performed through the flow analysis. The verification for designed compressor was carried out from three-dimensional Navier-Stokes analysis. The results will be used as reference data for a new design of 3-D impeller shape to improve propane refrigerant compressor performance.

  • PDF

The Lubrication Characteristics of Rotary Compresssor for refrigeration & air-conditioning (Part I; The analysis of Rolling Piston behavior ) (냉동, 공조용 로터리 콤프레서의 윤활 특성 제1보;롤링 피스톤의 거동해석)

  • 조인성;김진문;백일현;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.7-16
    • /
    • 1996
  • Rapid increase of refrigeration & air-conditioning system( r & a system ) in modern industries brings attention to the urgency of development as a core technology in the area. And it required to the compatibility problem of r & a system to alternative refrigerant for the protection of environment. Then, it is requested to research about the lubrication characteristics of refrigerant compressor which is the core thechnology in the r & a system. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressor. Therefore, theoetical investigation of the lubrication characteristics of rotary compressor for r & a system is studied. And the Runge-Kutta method is used for the analysis of the behavior of rolling piston in the rotary compressor. The results show that the rotating speed of shaft and the discharge pressure have an important effect upon the angular velocity of the rolling piston. This results give important basic data for the further lubrication analysis and design of the rotary compressor.

  • PDF

Analysis of impeller exit condition using a modified Stanitz equation in a centrifugal refrigerant compressor (예측수정된 Stanitz 방정식을 이용한 임펠러 출구 조건 해석)

  • Jeong, J.;Kim, C.D.;Lee, H.K.;Lee, Y.D.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.61-68
    • /
    • 1999
  • We have measured pressure distributions within the diffuser and pressures at the inlet and outlet of the compressor in orde to match impeller and low-solidity diffuser of 500RT centrifugal refrigerant-compressor which has been developed in LG Cable Ltd. Modified Stanitz equation is used to predict the measured data by tuning several parameters and then is validated. Using the validated parameters and modified Stanitz equation, we have obtained data necessary to design the diffuser.

  • PDF

A Study on the Determination of Mixed Refrigerant for the Joule-Thomson Cryocooler (극저온 Joule-Thomson 냉동기용 혼합냉매 결정에 관한 연구)

  • 이경수;장기태;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.901-907
    • /
    • 2000
  • The conceptual determination of mixed-refrigerant (MR) for a closed Joule-Thomson cryocooler is described in this paper. The thermodynamic cycle design was mainly considered to develop a cryocooler by using a compressor of domestic air-conditioning unit. The target cooling performance of the designed cryocooler is 10 W around 70 K with less than 5 kJ/kg enthalpy rise. The systematic approach of choosing a proper refrigerant among 20 different kinds of mixture for such cryogenic temperature was introduced in detail. The main components of the cryocooler are compressor, evaporator, oil separator, after-cooler, counterflow heat exchanger, and J-T expansion device. Due to the limitation of the compressor operation range, the temperature after the compression was limited below $117^{\circ}C$ (390 K) and the temperature before compression was restricted above $5^{\circ}C$ (278 K). 20 atm of discharging pressure (high pressure) and less than 3 atm suction pressure (low pressure) were the design conditions. The inlet temperature of a counterflow heat exchanger in the high Pressure side was about 300 K. The proper composition of the mixed refrigerant for the designed J-T cryocooler is 15% mol of$ N_2, 30% mol of $CH_4,\; 30% mol\; of C^2H^ 6,\; 10%\; mol\; of\; C_3H_8\; and \;15%\; mol\; of\; i-C_4H_10$.

  • PDF