• Title/Summary/Keyword: Reforming Reaction

Search Result 293, Processing Time 0.022 seconds

Steam reforming of methane in a solar receiver reactor (SiC foam에 코팅된 상용 촉매에서의 집광된 태양열을 이용한 메탄 수증기개질 반응 연구)

  • Kim, Ki-Man;Han, Gui-Young;Seo, Tae-Beom;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • Steam reforming of methane using Xe-arc solar simulator was studied for the application of concentrated solar energy into chemical reaction. The reactor, a volumetric absorber, consisted of a porous ceramic foam disk coated with commercial reforming catalyst. Operating temperature was in the range of $450\;-\;550^{\circ}C$ and the excess steam ratio to methane was from 3.0 to 5.0. At the steady-state condition, the conversion of methane Increased with temperature in the range of 15 % - 30 % and the experimentally determined conversion was found to be close to theoretical equilibrium conversion. It was also found that the CO selectivity slightly decreased with excess steam ratio. Finally, the conversion of methane decreased significantly with space velocity of reactants.

Development of Simplified One-dimensional Model for Microchannel Steam/Methane Reformers based on Catalyst Effectiveness Factor Correlations (촉매유효도 상관식에 기반한 마이크로 채널형 수증기/메탄 개질기의 간략화된 1차원 해석모델의 개발)

  • Yun Seok Oh;Dae-Hoon Lee;Jin Hyun Nam
    • New & Renewable Energy
    • /
    • v.19 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • In this study, an efficient one-dimensional model was developed for predicting microchannel steam/methane reformers with thin washcoat catalyst layers with a focus on low-pressure reforming conditions suitable for distributed hydrogen production systems for fuel cell applications. The governing equations for steam/methane mixture gas flowing through the microchannel reformer were derived considering the species conservation with reforming reactions and energy conservation with external convective heat supply. The reaction rates for the developed model were simply determined through the catalyst effectiveness factor correlations instead of performing complicated calculations for the steam/methane reforming process occurring inside the washcoat catalyst layers. The accuracy of the developed was verified by comparing the results obtained herein with those obtained by the detailed computational fluid dynamics calculation for the same microchannel reformer.

Thermal Behaviors and Reaction Characteristics of an Integrated Reactor with Catalytic Combustion-Reforming According to Operation Conditions (운전조건 변경에 따른 통합형 촉매연소-개질반응기의 열적 거동 및 반응 특성)

  • Ghang, Tae-Gyu;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.641-648
    • /
    • 2011
  • Off-gases emitted from the anode of a molten carbonate fuel cell (MCFC) at high temperatures for power generation are used as fuel in catalytic combustion. The heat generated in the catalytic combustor is utilized as the heat for the endothermic reaction required for steam reforming. Among the various operational conditions of the integrated reactor, we varied the inlet gas compositions of the catalytic combustor according to fuel utilization in the MCFC and the ratio of steam to carbon in the reformer. Subsequently, the thermal behaviors and reaction characteristics of the integrated reactor were investigated experimentally. The fundamental data from this experimental study will be useful for the design and fabrication of a more practical integrated reactor in the future.

Autothermal Reforming Reaction of Methane using Ni-Ru/$Al_2O_3$-MgO Metallic Monolith Catalysts (Ni-Ru/$Al_2O_3$-MgO 금속 모노리스 촉매체를 이용한 메탄의 자열 개질반응)

  • Lee, Chang-Ho;Lee, Tae-Jun;Shin, Jang-Sik;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.321-328
    • /
    • 2011
  • The autothermal reforming reaction of methane was investigated to produce hyd rogen with Ni/$CeO_2-ZrO_2$, Ni/$Al_2O_3$-MgO and Ni-Ru/$Al_2O_3$-MgO catalysts. Honeycomb metalli c monolith was applied in order to obtain high catalytic activity and stability in autothermal r eforming. The catalysts were characterized by XRD, BET and SEM. The influence of various catalysts on hydrogen production was studied for the feed ratio($O_2/CH_4$, $H_2O/CH_4$). The $O_2/CH_4$ and $H_2O/CH_4$ ratio governed the methane conversion and temperature profile of reactor. Th e reactor temperature increased as the reaction shifted from endothermic to exothermic reactio n with increasing $O_2/CH_4$ ratio. Among the catalysts used in the experiment, the Ni-Ru/$Al_2O_3$-MgO catalyst showed the highest activity. The 60% of $CH_4$ conversion was obtained, and th e reactor temperature was maintained $600^{\circ}C$ at the condition of GHSV=$10000h^{-1}$ and feed ratio S/C/O=0.5/1/0.5.

Steam Reforming of Methane for Chemical Heat Storage As a Solar Heat Storage. Part 1. Conversion of Methane (화학축열을 통한 태양열 저장을 위한 메탄의 스팀개질 반응 특성(Part 1. 메탄 전화율))

  • Yang, D.H.;Chung, C.H.;Han, G.Y.;Seo, T.B.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2001
  • The chemical heat storage as the one way of utilization for high temperature solar energy was considered. The stram reforming reaction of methane was chosen for endothermic reaction. The reactor was made of stainless steel and the dimension was 6.25 mm I.D. and 30 cm long coiled tube because of the geometry requirement of solar receiver. The methane conversion was increased linearly with reaction temperature and nickel content of catalyst. The methane conversion was 60% at $600^{\circ}C$ and 90% at $900^{\circ}C$. The feasibility of steam reforming of methane as the conversion of solar energy to chemical heat storage was confirmed.

  • PDF

Simulation for Possible Coke-Free Operation of a Packed Catalyst Bed Reactor in the Steam-CO2 Reforming of Natural Gas (천연가스의 수증기-이산화탄소 복합개질용 촉매 충진 반응기의 코킹 회피 운전을 위한 모사)

  • LEE, DEUK KI;LEE, SANG SOO;SEO, DONG JOO;YOON, WANG LAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.445-452
    • /
    • 2015
  • A tubular packed bed reactor for the steam-$CO_2$ combined reforming of natural gas to produce the synthesis gas of a target $H_2/CO$ ratio 2.0 was simulated. The effects of the reactor dimension, the feed gas composition, and the gas feeding temperature upon the possibility of coke formation across the catalyst bed were investigated. For this purpose, 2-dimensional heterogeneous reactor model was used to determine the local gas concentrations and temperatures over the catalyst bed. The thermodynamic potential distribution of coke formation was determined by comparing the extent of reaction with the equilibrium constant given by the reaction, $CH_4+2CO{\Leftrightarrow}3C+2H_2O$. The simulation showed that catalysts packed in the central region nearer the entrance of the reactor were more prone to coking because of the regional characteristics of lower temperature, lower concentration of $H_2O$, and higher concentration of CO. With the higher feeding temperature, the feed gas composition of the increased $H_2O$ and correspondingly decreased $CO_2$, or the decrease in the reactor diameter, the volume fraction of the catalyst bed subsequent to coking could be diminished. Throughout the simulation, reactor dimension and reaction condition for coking-free operation were suggested.

FBR CFD Simulation of Steam Methanol Reforming Reaction using Intrinsic Kinetic Data of Copper-impregnated Hydrotalcite Catalyst (구리가 함침된 하이드로탈사이트 촉매의 고유 키네틱 데이터를 이용한 메탄올 수증기 개질반응의 고정층 반응기 CFD 시뮬레이션)

  • Jae-hyeok Lee;Dongil Shin;Ho-Geun Ahn
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.78-85
    • /
    • 2023
  • Fixed-bed reactor Computational Fluid Dynamics (CFD) simulation of methanol steam reforming reaction was performed using the intrinsic kinetic data of the copper-impregnated hydrotalcite catalyst. The activation energy of the copper hydrotalcite catalyst obtained from the previous study results was 97.4 kJ/mol, and the pre-exponential was 5.904 × 1010. Process simulation was performed using the calculated values and showed a similar tendency to the experimental results. And the conversion rate according to the change of the reaction temperature (200 - 450 ℃) and the molar ratio of methanol and water was observed using the intrinsic kinetic data. In addition, mass and heat transfer phenomena analysis of a commercial reactor (I.D. 0.05 - 0.1m, Length 1m) was predicted through axial 2D Symmetry simulation using the power law model of the above kinetic constants.

Autothermal Reforming Reaction at Fuel Process Systems of 1Nm3/h (1 Nm3/h급 연료 변환시스템에서 메탄의 자열 개질반응)

  • Koo, Jeong-Boon;Sin, Jang-Sik;Yang, Jeong-Min;Lee, Jong-Dae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.802-807
    • /
    • 2012
  • The autothermal reforming of methane to syngas has been carried out in a reactor charged with both a Ni (15 wt%)-Ru (1 wt%)/$Al_2O_3$-MgO metallic monolith catalyst and an electrically-heated convertor (EHC). The standalone type reactor has a start-up time of less than 2 min with the reactant gas of $700^{\circ}C$ fed to the autothermal reactor. The $O_2/CH_4$ and $H_2O/CH_4$ ratio governed the methane conversion and temperature profile of reactor. The reactor temperature increased as the reaction shifted from endothermic to exothermic reaction with decreasing $H_2O/CH_4$ ratio. Also the amount of $CO_2$ in the products increases with increasing $H_2O/CH_4$ ratio due to water gas shift reaction. The 97% of $CH_4$ conversion was obtained and the reactor temperature was maintained $600^{\circ}C$ at the condition of $GHSV=10,000\;h^{-1}$ and feed ratio ($H_2O/CH_4=0.6$ and $O_2/CH_4=0.5$). In this condition, the maximum flow rate of the syngas generated from the reactor charged with 170 cc of the metallic monolith catalyst is $0.94\;Nm^3/h$.

Computational Fluid Dynamics Analysis of Plate Type Reformer for MCFC (용융탄산염 연료전지용 평판형 개질기 열유동 전산유체역학 해석)

  • Shin, Dong-Hoon;Seo, Hye-Gyung;Lim, Hee-Chun;Lee, Sang-Duk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.403-408
    • /
    • 2006
  • The plate reformer consisting of combustion chamber and reforming chamber for 25 kW MCFC stack has been operated and computational fluid dynamics was applied to estimate reactions and thermal fluid behavior in the reformer. The methane air 2-stage reaction was assumed in the combustion chamber, and three step steam reforming reactions were included in the calculation. Flow uniformity, reaction rate and species distribution, and temperature distribution were analyzed. In particular, temperature distribution was compared with the measurements to show good agreement in the combustion chamber, however, inappropriate agreement in the reformer chamber.

$CO_2$ reforming using $TiO_2$/Ni catalysts prepared by atomic layer deposition

  • Kim, Dong-Wun;Kim, Kwang-Dae;Seo, Hyun-Ook;Dey, Nilay Kumar;Kim, Myoung-Joo;Kim, Young-Dok;Lim, Dong-Chan;Lee, Kyu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.443-443
    • /
    • 2011
  • Atomic layer deposition (ALD) was used to deposit $TiO_2$ on Ni particles, and changes in the catalytic activity of Ni for $CO_2$ reforming of methane (CRM) were studied. In the presence of $TiO_2$ islands on Ni surfaces, the onset temperature of the CRM reaction was lower than that of bare Ni. During the CRM reaction, carbon was deposited on the surface, reducing the catalytic activity of the surface, but $TiO_2$ was able to remove the carbon deposits from the surface. When the Ni surface was completely covered with $TiO_2$, catalytic activity disappeared, indicating that tuning of $TiO_2$ coverage on Ni is important for maximizing the activity of the CRM reaction.

  • PDF