• 제목/요약/키워드: Reflectometry

검색결과 268건 처리시간 0.028초

Time Domain Reflectometry 방식을 이용한 도로 하부의 함수비 계측 및 보정 방안에 관한 연구 (A Study on Measuring and Calibration Method using Time Domain Reflectometry Sensor under Road Pavement)

  • 조명환;이윤한;김낙석;박주영
    • 한국방재학회 논문집
    • /
    • 제10권2호
    • /
    • pp.23-30
    • /
    • 2010
  • 본 연구는 도로 설계나 공용성 평가 및 잔류 수명 예측시 필요한 아스팔트 콘크리트 포장 하부의 함수비 계측에 관한 논문으로 여러 함수비 계측 방법 중 미국 Campbell 사에서 제작한 TDR(Time Domain Reflectometry) 방식의 함수센서(CS616)를 도로 하부에 설치하고, 함수 센서에 대한 검정과 보정시험을 수행하였다. 함수센서의 검정 방법으로 피복두께 및 센서간섭의 영향, $5^{\circ}C\sim25^{\circ}C$ 범위에서 온도의 영향 및 다짐률의 영향에 대하여 검토하였으며, 함수센서가 매설된 6개 지역으로부터 얻어진 토질에 대하여 보정시험을 수행하였다. 함수센서 검정결과 피복두께 및 센서 간섭의 영향은 크지 않은 것으로 나타났으며, 온도 및 다짐률의 영향은 체적함수비로 $\pm6%$ 미만으로 무시가능 한 것으로 나타났다. 또한 노상 및 보조기층에 대한 보정시험 결과 $R^2$값이 모두 0.9이상으로 나타났으며, 6개 현장 시료에 대한 총괄식보다 개별 현장에 대한 보정식을 사용하는 것이 보다 정확한 현장계측이 이루어질 것으로 사료된다.

여러 가지 수열을 적용한 STDR/SSTDR 기법의 성능 비교 및 개선 (Performance Comparison and Improvement of STDR/SSTDR Schemes Using Various Sequences)

  • 한정재;박소령
    • 한국통신학회논문지
    • /
    • 제39A권11호
    • /
    • pp.637-644
    • /
    • 2014
  • 이 논문에서는 다양한 길이와 종류의 수열을 사용한 STDR(sequence time domain reflectometry) 및 SSTDR(spread spectrum time domain reflectometry) 기법의 고장위치 탐지 성능을 비교하고, SSTDR 기법의 성능 향상을 위한 인가신호 제거 방식을 제안한다. 대표적인 PN(pseudo-noise) 수열인 m 수열, 자기상관(autocorrelation) 성질이 우수한 이진(binary) Barker 수열과 4위상 Frank 수열을 사용하였을 때, 전력선 채널 모형에서 고장 유형, 고장위치, 제안 기법 사용 유무를 바꾸어가며 오탐지율을 비교 분석한다. 감쇠가 심할 때와 고장위치가 매우 가까울 때 제안한 인가신호 제거 방식을 사용하면 고장위치 탐지 성능을 크게 개선시킬 수 있음을 모의실험으로 확인한다.

Thickness and Surface Measurement of Transparent Thin-Film Layers using White Light Scanning Interferometry Combined with Reflectometry

  • Jo, Taeyong;Kim, KwangRak;Kim, SeongRyong;Pahk, HeuiJae
    • Journal of the Optical Society of Korea
    • /
    • 제18권3호
    • /
    • pp.236-243
    • /
    • 2014
  • Surface profiling and film thickness measurement play an important role for inspection. White light interferometry is widely used for engineering surfaces profiling, but its applications are limited primarily to opaque surfaces with relatively simple optical reflection behavior. The conventional bucket algorithm had given inaccurate surface profiles because of the phase error that occurs when a thin-film exists on the top of the surface. Recently, reflectometry and white light scanning interferometry were combined to measure the film thickness and surface profile. These techniques, however, have found that many local minima exist, so it is necessary to make proper initial guesses to reach the global minimum quickly. In this paper we propose combing reflectometry and white light scanning interferometry to measure the thin-film thickness and surface profile. The key idea is to divide the measurement into two states; reflectometry mode and interferometry mode to obtain the thickness and profile separately. Interferogram modeling, which considers transparent thin-film, was proposed to determine parameters such as height and thickness. With the proposed method, the ambiguity in determining the thickness and the surface has been eliminated. Standard thickness specimens were measured using the proposed method. Multi-layered film measurement results were compared with AFM measurement results. The comparison showed that surface profile and thin-film thickness can be measured successfully through the proposed method.

지중 전력 케이블에 대한 웨이블릿 변환 기반 시간-주파수 영역 반사파 계측법 개발 (Wavelet Transform Based Time-Frequency Domain Reflectometry for Underground Power Cable)

  • 이신호;최윤호;박진배
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2333-2338
    • /
    • 2011
  • In this paper, we develope a wavelet transform based time-frequency domain reflectometry (WTFDR) for the fault localization of underground power cable. The conventional TFDR (CTFDR) is more accurate than other reflectometries to localize the cable fault. However, the CTFDR has some weak points such as long computation time and hard implementation because of the nonlinearity of the Wigner-Ville distribution used in the CTFDR. To solve the problem, we use the complex wavelet transform (CWT) because the CWT has the linearity and the reference signal in the TFDR has a complex form. To confirm the effectiveness and accuracy of the proposed method, the actual experiments are carried out for various fault types of the underground power cable.

TDR을 이용한 극초단파 대역에서 사용 절연유의 유전율과 전파속도 측정 (Measurement on the permittivity and propagation velocity of used insulation oil at UHF Band using time domain reflectometry)

  • 구선근;주형준;박기준;한기선;윤진열
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2011-2014
    • /
    • 2008
  • We measured the permittivity and electromagnetic wave propagation velocity of used insulation oil with wide frequency range including ultra-high frequency by time domain reflectometry. The permittivity or propagation velocity is essential for locating discharge faults of oil filled power transformer. We derived 2.21 as a permittivity and $2.03{\times}10^8 m/s$ as a velocity from the measurement of pulse travelling time along a coaxial line filled with used insulation oil or air. The permittivity measurement system we designed shows high measurement accuracy and the convenience for field use.

첩 신호 파라메터 추정 기반 통신 케이블 고장점 탐지에 관한 연구 (Communication Cable Fault Localization Based on Chirp Signal Parameter Estimation)

  • 이춘구;한슬기;박진배;윤태성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1782_1783
    • /
    • 2009
  • Reflectometry that has been used to localize faults on a cable is introduced. One of the key point of reflectometry is finding time delay between the incident and reflected signals. In this paper, we propose new reflectometry that use Gaussian enveloped linear chirp signal, and use Kalman filter to estimate frequency rate parameter of the chirp signal. From the estimated frequency rate parameter, we can measure the time delay. In a simulation assuming open ended cable, the proposed method is proved to give a good estimation results.

  • PDF

Reconstruction of the Electron Density Profile in O-mode Ultrashort Pulse Reflectometry using a Two-dimensional Finite Difference Time Domain

  • Roh, Young-Su
    • 조명전기설비학회논문지
    • /
    • 제27권7호
    • /
    • pp.52-58
    • /
    • 2013
  • The two-dimensional finite difference time domain algorithm is used to numerically reconstruct the electron density profile in O-mode ultrashort pulse reflectometry. A Gaussian pulse is employed as the source of a probing electromagnetic wave. The Gaussian pulse duration is chosen in such a manner as to have its frequency spectrum cover the whole range of the plasma frequency. By using a number of numerical band-pass filters, it is possible to compute the time delays of the frequency components of the reflected signal from the plasma. The electron density profile is reconstructed by substituting the time delays into the Abel integral equation. As a result of simulation, the reconstructed electron density profile agrees well with the assumed profile.

Improvement of Power Spectrum in Ultrashort Pulse Reflectometry Signals Using Three Chirp Configuration

  • Roh, Young-Su
    • 조명전기설비학회논문지
    • /
    • 제28권3호
    • /
    • pp.51-56
    • /
    • 2014
  • The flat power spectrum of the transmitter output signal for the desired frequency range is ideal to achieve the best performance of ultrashort pulse reflectometry. However, the power spectrum of a typical pulse generator decreases significantly as frequency increases. A configuration of three chirped waveforms was employed to improve the power spectrum of the transmitter signal at higher frequencies. To determine the amplification gain required for higher frequency components, three chirped waveforms were theoretically generated and their power spectra were measured using numerical band-pass filters. Based on the results of numerical computations, the three chirp configuration was successfully applied to the design of the transmitter for a broadband system.

PXI모듈을 이용한 랩뷰 기반 시간-주파수 영역 반사파 실시간 계측 시스템 구현 (Implementation of a Labview Based Time-Frequency Domain Reflectometry Real Time System using the PXI Modules)

  • 박태근;곽기석;박진배;윤태성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.336-338
    • /
    • 2006
  • One of the important topics concerning the safety of electrical and electronic system is the reliability of the wiring system. The Time-Frequency Domain Reflectometry(TFDR) is a state-of-the-art system for detection and estimation of the fault on a wiring/cable. The purpose of this paper is to implement a Labview based TFDR Real Time system though the instruments of PCI extensions for Instrumentation(PXI). The TFDR Real Time system consists of the five parts: Reference signal design, signal generation, signal acquisition, algorithm execution, results diplay part. In the signal generation and acquisition parts we adopt the Arbitrary Waveform Generator(AWG) and Digital Storage Oscilloscope(DSO) PXI modules which offer commonality, compatibility and easy integration at low cost. And execution of the PXI modules not only is controlled by the Labview programing but also the total system process is executed by the Labview application software.

  • PDF

절연전선 결함 위치 추정에 대한 시간-주파수 영역 반사파 계측법의 적용 (Estimation of Fault Location on a Power Line using the Time-Frequency Domain Reflectometry)

  • 두승호;곽기석;박진배
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.268-275
    • /
    • 2008
  • In this paper, we introduce a new method for detecting and estimating faults on a power line using the time-frequency domain reflectometry system. The system rests upon time-frequency signal analysis and uses a chirp signal which is multiplied by Gaussian envelope. The chirp signal is used as a reference signal, and we can get the reflected signal from a fault on a wire. To detect and estimate faults, we analyze the reflected signal by Wigner time-frequency distribution function and normalized time-frequency cross correlation function. In this paper we design an optimal reference signal for power line and implement a system for estimating fault distance on a power line with the TFDR implemented by PXI equipments. This approach is verified by some experiments with HIV 2.25mm power lines.