• Title/Summary/Keyword: Reflective optics

Search Result 88, Processing Time 0.022 seconds

A Study on the Method for the Local Transmittance Measurements of the Ocular Lens (안경 렌즈의 국소적 투과율 측정을 위한 방법에 관한 연구)

  • Park, Sang-Kook;Ri, Hyeong-Cheol;Youk, Do-Jin;Sung, Duk-Yong;Kang, Sung-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.4
    • /
    • pp.471-477
    • /
    • 2014
  • Purpose: We have analyzed the transmittance distribution of the ocular lens using local transmittance microscope to investigate the optical homogeneity of the lens. Methods: The transmittance of the laser which is focused on the surface of the ocular lens was measured by using the photo-detector and lock-in amplifier and analyzed. Multi-coated, uncoated, and progressive lenses were analyzed. Results: In the measurement of the progressive lens and a physical stimulated lens, local transmittance microscopy analysis showed a high degree of match with the measurement results through the optical microscope. In addition, the average value of the transmittance is reduced and the standard deviation was increased in the presence of optical defects. In unstimulated lens, there are a large impact on transmittance whether the anti-reflective coating is presence or absence in both the local transmittance microscopy and general transmittance analysis. Conclusions: The distribution of the transmittance measured by local transmission microscopy were changed when the various stimulus is applied to the lenses. These analyzes by local transmission microscopy can be utilized as a way to evaluate or determine the uniformity of the coating film or lens.

Infinitely high selectivity etching of SnO2 binary mask in the new absorber material for EUVL using inductively coupled plasma

  • Lee, S.J.;Jung, C.Y.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.285-285
    • /
    • 2011
  • EUVL (Extreme Ultra Violet Lithography) is one of competitive lithographic technologies for sub-30nm fabrication of nano-scale Si devices that can possibly replace the conventional photolithography used to make today's microcircuits. Among the core EUVL technologies, mask fabrication is of considerable importance since the use of new reflective optics having a completely different configuration compared to those of conventional photolithography. Therefore new materials and new mask fabrication process are required for high performance EUVL mask fabrication. This study investigated the etching properties of SnO2 (Tin Oxide) as a new absorber material for EUVL binary mask. The EUVL mask structure used for etching is SnO2 (absorber layer) / Ru (capping / etch stop layer) / Mo-Si multilayer (reflective layer) / Si (substrate). Since the Ru etch stop layer should not be etched, infinitely high selectivity of SnO2 layer to Ru ESL is required. To obtain infinitely high etch selectivity and very low LER (line edge roughness) values, etch parameters of gas flow ratio, top electrode power, dc self - bias voltage (Vdc), and etch time were varied in inductively coupled Cl2/Ar plasmas. For certain process window, infinitely high etch selectivity of SnO2 to Ru ESL could be obtained by optimizing the process parameters. Etch characteristics were measured by on scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Detailed mechanisms for ultra-high etch selectivity will be discussed.

  • PDF

Correlation of Refractive Error, Axial Length, Chamber Depth, Lens Thickness and Corneal Thickness of Normal University Students (정상 대학생의 눈 굴절이상, 안축장, 전방깊이, 수정체두께 그리고 각막두께의 연관성)

  • Kim, Chang-Sik;Lee, Hak-Jun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.89-94
    • /
    • 2008
  • Purpose: To make a comparative study of correlation between biometry data of size in eyeball and refractive error. Methods: The subjects were 68 normal university students (male 36, female 32) and the average age was 22.85${\pm}$3.12. We measured the students' eyesight by A-scan ultrasound and refractor. The results were examined it's statistical significance by SPSS 12.0 version. Results: The mean of axial length was 24.31${\pm}$1.24 mm, chamber depth was 3.48${\pm}$0.28 mm, lens thickness was 3.56${\pm}$0.26 mm and corneal thickness was 0.55${\pm}$0.03 mm. Male's Axial length and chamber depth were larger than female's. As reflective error decreases the thickness of lens become thicker. The measurement data between right eye and left eye didn't had difference and there was no correlation with result of T-test. There were statistically significant correlation with length and chamber depth, axial length and corneal thickness, chamber depth and corneal thickness, and refractive error and lens thickness (p<0.01). Refractive error and axial length were minus linear regression (r=-0.56). Conclusions: Eye's refractive error was changed by axial length, chamber depth and lens thickness but it wasn't related with sex and whether it is a right eye or a left eye.

  • PDF

Widely Tunable Double-Ring-Resonator Add/Drop Filter (광대역 파장가변 이중 링 공진기 Add/Drop 필터)

  • Lee, Dong-Hyun;Lee, Tae-Hyung;Park, Joon-Oh;Kim, Su-Hyun;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.216-220
    • /
    • 2007
  • A widely tunable add/drop filter composed of double ring resonators is implemented with high-index-contrast polymer waveguide. To enhance the productivity, directional couplers are designed to have good fabrication tolerance. The refractive indices of the core and cladding in the 1550 nm wavelength are 1.51 and 1.378, respectively. Drop response in comparison with neighborhood peak gets enhanced by more than 2.9 dB at the wavelength where both rings resonate. This filter can be used to build widely tunable laser diode through hybrid-integration with reflective SOA.

Confocal off-axis optical system with freeform mirror, application to Photon Simulator (PhoSim)

  • Kim, Dohoon;Lee, Sunwoo;Han, Jimin;Park, Woojin;Pak, Soojong;Yoo, Jaewon;Ko, Jongwan;Lee, Dae-Hee;Chang, Seunghyuk;Kim, Geon-Hee;Valls-Gabaud, David;Kim, Daewook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.75.2-76
    • /
    • 2021
  • MESSIER is a science satellite project to observe the Low Surface Brightness (LSB) sky at UV and optical wavelengths. The wide-field, optical system of MESSIER is optimized minimizing optical aberrations through the use of a Linear Astigmatism Free - Three Mirror System (LAF-TMS) combined with freeform mirrors. One of the key factors in observations of the LSB is the shape and spatial variability of the Point Spread Function (PSF) produced by scatterings and diffraction effects within the optical system and beyond (baffle). To assess the various factors affecting the PSF in this design, we use PhoSim, the Photon simulator, which is a fast photon Monte Carlo code designed to include all these effects, and also atmospheric effects (for ground-based telescopes) and phenomena occurring inside of the sensor. PhoSim provides very realistic simulations results and is suitable for simulations of very weak signals. Before the application to the MESSIER optics system, PhoSim had not been validated for confocal off-axis reflective optics (LAF-TMS). As a verification study for the LAF-TMS design, we apply Phosim sequentially. First, we use a single parabolic mirror system and compare the PSF results of the central field with the results from Zemax, CODE V, and the theoretical Airy pattern. We then test a confocal off-axis Cassegrain system and check PhoSim through cross-validation with CODE V. At the same time, we describe the shapes of the freeform mirrors with XY and Zernike polynomials. Finally, we will analyze the LAF-TMS design for the MESSIER optical system.

  • PDF

Optical Microphone Incorporating a Reflective Micromirror and a Dual-core Collimator (반사형 마이크로미러와 듀얼 코어 클리메이터를 이용한 광 마이크로폰)

  • Song, Ju-Han;Kim, Do-Hwan;Gu, Hyun-Mo;Park, Hyun-Jung;Lee, Sang-Shin;Cho, Il-Joo
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.94-98
    • /
    • 2006
  • An optical microphone based on a dual-core fiber collimator and a membrane type micromirror serving as an optical head and a reflective diaphragm respectively was implemented. The micromirror diaphragm is suspended by a thin silicon bar linked with a frame, thus it is subject to a displacement induced by acoustic waves. The optical head incorporating two collimators integrated in a single housing gives light to and receives it from the diaphragm, rendering the optical microphone structure simple and compact. This dual-core collimator having a slowing varying beam profile facilitates the initial alignment of the optical head with the diaphragm, especially the distance between them. For the assembled microphone, the static characteristics were investigated tofind the operation point defined as the optimum distance between the head and the diaphragm, and a frequency response with a variation of about $\pm$5 dB for the range of up to 3kHz was achieved.

Studies on Curved Diffractive Optical Elements in EUV (극자외선 영역에서 곡면 DOEs에 관한 연구)

  • Choi, Sung-Eul;Lee, Yong-Woo;Kwon, Myung-Hoi;Kim, Yong-Hoo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.304-312
    • /
    • 2005
  • Field performance of several different types of diffractive optical elements(DOEs) has been carried out. Using Zemax model, we have designed five different types of DOEs, such as transmissive flat-DOE, transmissive curved-DOE, reflective flat-DOE, reflective curved-DOE and parabolic mirror, We have applied two different wavelengths, i.e., 13 m(EUV) and 632.8 nm(visible) to above DOEs. Off_axis dominate aberrations and the diffraction limiting (Rayleigh limit) field angles have been investigated and compared at both wavelengths for each DOE. At diffraction limit, field angle of curved-DOEs was much greater than that of flat-DOEs for both transmission and reflective types. We also showed that dominated off_axis aberration of flat-DOEs was coma, but that of curved-DOEs was mixture of astigmatism and curvature of field. The measured field angle and expected OPD aberrations were well coincided with theoretical ones. Increasing the ratio of field angle with wavelength was more effective in curved-DOEs than flat-DOEs.

Functional Nannomaterials Based on Nanoporous Template

  • Kim, Jin-Gon;Yang, Seung-Yun;Byeon, Jin-Seok;Jeon, Geum-Hye;Jo, A-Ra
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.7.1-7.1
    • /
    • 2011
  • Nanoporous templates have been widely used for the development of new functional nanostructured materials suitable for electronics, optics, magnetism, and energy storage materials. We have prepared nanoporous templates by using thin films of mixtures of polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) and PMMA homopolymers. These templates have cylindrical nanoholes spanning the entire thickness of the film. Some applications of nanoporous templates are introduced: a) anti-reflective coating, b) the preparation of conducting polymer nanowires of poly (pyrrole), poly (3,4-ethylenedioxy-thiopene) onto a glass coated with indium-tin-oxide, and c) the separation membranes for biomaterials. We found that when the pore fraction of nanoholes in the film was ~0.68, almost zero reflectance at a specific wavelength, which can be changed with film thickness, was achieved at visible wavelengths Furthermore, ultra high density array of conducting nanowires was successfully prepared onto various substrates including flexible polymer. Due to highly alignment of polymer chain along the nanowire direction, the conductivity was much increased. Furthermore, these nanoporous films were found to be very effective for the separation of human Rhinovirus type 14 (HRV 14), major pathogen of a common cold in humans, from the buffer solution. We also found that when the pore size was effectively controlled down to 6 nm, a single file diffusion was observed.

  • PDF

Hybrid Welding Process for Sheet Metal and Narrow Gap Fill Pass (하이브리드 용접방식을 이용한 박판 및 후판용접공정)

  • Choi, Hae-Woon;Shin, Hyun-Myung;Im, Moon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.978-983
    • /
    • 2008
  • An application of innovative laser+GMA hybrid welding process is presented for reducing bead humping defects in high speed welding and increasing side wall fusion in narrow groove welding without torch or wire oscillation. In this hybrid process, the laser heat input is applied adjacent to the weld pool at a relatively low power density to produce a wider, flatter weld bead. In bead on plate in sheet metal gauges, the hybrid process was able to produce hump-free welds from 70ipm (${\sim}1780mm/min$) to over 150ipm (${\sim}3810mm/min$) of the travel speed compared to the un-assisted GMAW process. A square-butt joint in 15mm A572 Gr50 steel welds was investigated. A square butt joint with a gap of 3.2mm was filled with 6 passes. Liquid Nitrogen calorimetry and innovative $CO_2$ laser reflective optics were also developed to demonstrate the concept of hybrid welding.

Double-Layer 3D Rear Projection Display System using Scattering Polarizer Film (후면투사 방식의 이중스크린 3D 프로젝션 디스플레이)

  • Kim, Tae-Ho;Seo, Jong-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.421-425
    • /
    • 2007
  • A new 3D rear projection display system using double-layer polarization-selective screen systems, one stacked in front of the other, has been developed. The front and rear screens are made of scattering polarizer films, and they either diffuse-scatter or transmit the incident light depending on the polarization state of the light. The near and for images are projected onto the front and rear screens, respectively, using light waves with mutually orthogonal polarization states. The new display system produces clear high-resolution images, which are visible over a wide range of viewing angle. It was found that the impression of depth is pronounced and eyestrain is only comparable to that by 2D display systems.