• Title/Summary/Keyword: Reflection Model

Search Result 922, Processing Time 0.031 seconds

Reflection and Transmission Coefficients for Rubble Mound Breakwaters in Busan Yacht Harbor

  • Park, O Young;Dodaran, Asgar Ahadpour;Bagheri, Pouyan;Kang, Kyung Uk;Park, Sang Kil
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.90-94
    • /
    • 2013
  • This paper reports the results obtained for there flection and transmission coefficients on rubble mound breakwaters in Busan Yacht Harbor. A2D physical model test was conducted in the wave flume at the Coastal Engineering Research Laboratory at Pusan National University, Busan, South Korea. In this study, physical model tests were completed to further our understanding of the hydrodynamic processes that surround a rubble mound structure subjected to irregular waves. In particular, the reflection and transmission coefficients, as well as the spectrum transformation, were analyzed. This analysis suggests that with an increase in wave height around a rubble mound, the reflection coefficient drastically increases at each water level (HHW or MSL or LLW). Moreover, when the water level changes from HHW to LLW, the reflection coefficient is suddenly reduced. A further result of the analysis is that the transmission coefficient strongly drops away from the rear of the structure. Finally, in regard to the rubble mound breakwater in Busan Yacht Harbor, a consideration of the reflection and transmission coefficients plays an important role in the design.

Extraction of tire information markings using a surface reflection model (표면의 반사 특성을 이용한 타이어 정보 마크의 추출)

  • Ha, Jong-Eun;Lee, Jae-Yong;Gwon, In-So
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.324-329
    • /
    • 1996
  • In this paper, we present a vision algorithm to extract the tire information markings on the sidewall of tires. Since the appearance of tire marks is the same as its background, a primary feature to distinguish tire marks from their background is the roughness. Generally, the roughness of tire marks is different from that of its bakground: the surface of tire marks is smoother than the backgrounds. Light incident on the tire surface is reflected differently according to the roughness. For smoother surfaces, the surface irradiance is much stronger than that of rough surfaces. Based on these phenomena and observation, we propose an optimal illumination condition based on Torrance-Sparrow reflection model. We also develop an efficient reflectance-ratio based operator to extract the boundary of tire marks. Even with a very simple masking operation, we were able to obtain remarkable boundary extraction results from real experiments using many tires. By explicitly using the surface reflection model to explain the intensity variation on the black tire surface, we demonstrate that a physics-based vision method is powerful and feasible in extracting surface markings on tires.

  • PDF

An Analysis of Wave Height Distribution in the Vicinity of Samcheon New-Harbor (삼천포 신항의 파고분포 해석)

  • Jang, Dae-Jeong;Ham, Gye-Un
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • The calmness inside a harbor plays an important role in the appropriate disposition of harbor structures. However, it is not easy to acquire accurate computational results because these are affected by many factors concerned with wave transformation. Recently, numerical model tests, which are quicker and more economical than hydraulic model experiments, were carried out for the purpose of analyzing wave height distributions in harbors. This paper presents a numerical model that is able to calculate wave heights inside a harbor. It is based on a time-dependent mild slope involving wave refraction, diffraction, shoaling effect, and reflection. In particular, arbitrary reflectivity is used at the boundary in order to simulate the real harbor reflection condition. The proposed numerical model is applied to Samcheon new-harbor in order to investigate harbor calmness.

The Characteristics of Muscle Fatigue of EMG Signal Using the AR Model (AR 모델을 이용한 EMG 신호의 근육피로 특성)

  • 김홍래;왕문성
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.11-16
    • /
    • 1989
  • This paper describes the AR model of EMG signal during maximum voluntary contraction. By comparing the AR coefficients and the reflection coefficients of the AR model with the median frequency of power spectrum, it is proved that muscle fatigue can be measured by the AR and the reflection coefficients. In the estimation procedure of AR model parameter, the autocorrelation method is superior to the covariance method, and it is determined that the optimal order is six. As the muscle becomes fatigue, the median frequency of power spectrum is declined, and the AR coefficient [$a_1$] and the reflection coefficient [$k_1$] are also decreased. Therefore the muscle fatigue can be measured by the AR parameter.

  • PDF

Scour-monitoring techniques for offshore foundations

  • Byuna, Yong-Hoon;Parkb, Kiwon;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.667-681
    • /
    • 2015
  • The scour induced by strong currents and wave action decreases the embedded length of monopiles and leads to a decrease of their structural stability. The objective of this study is the development and consideration of scour-monitoring techniques for offshore monopile foundations. Tests on physical models are carried out with a model monopile and geo-materials prepared in a cylindrical tank. A strain gauge, two coupled ultrasonic transducers, and ten electrodes are used for monitoring the scour. The natural frequency, ultrasonic reflection images, and electrical resistivity profiles are obtained at various scour depths. The experimental results show that the natural frequency of the model monopile decreases with an increase in the scour depth and that the ultrasonic reflection images clearly detect the scour shape and scour depth. In addition, the electrical resistivity decreases with an increase in scour depth. This study suggests that natural frequency measurement, ultrasonic reflection imaging, and electrical resistivity profiling may be used as effective tools to monitor the scour around an offshore monopile foundation.

Efficiency of wave absorption by the porous of "Taewoo" of Jeju in regular seaway (파랑 중 제주 "테우" 틈에 의한 파 흡수효과)

  • Lee, Chang-Heon;Choi, Chan-Moon;Ahn, Jang-Young;Cho, Il-Hyoung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.2
    • /
    • pp.144-152
    • /
    • 2013
  • In an effort to find the optimum porous of Taewoo through the mathematical model 2 - dimensional tank water experiment among the approached to a problem related to ocean engineering, this study analyzed the porosity by dividing it into 9 cases. As the wave penetrates through the longitudinal porous of the Taewoo model, it was found that there is a wave energy loss because of the phenomenon of the separation of the porous due to the eddy. Looking into the general tendency based on the wave-height meter (probe) data, it was found that the shorter wavelength and higher frequency area, the more reflection coefficients increased, but in contrast, the longer wavelength and lower frequency area, the transmission coefficients showed the increasing trend and energy dissipation was in a similar way with reflection coefficients. In addition, it was found that the bigger the porosity was, the narrower distribution range of reflection coefficients was, and the more its average value decreased. On the other hand the transmission coefficients in direct opposition to reflection was found to show the wider range and the more gradual increase in the average value as porosity was the bigger around the average value. In contrast, energy dissipation rate was found to increase linearly as porosity increased the more around the porosity of 0.2518 but it decreased gradually around the peak point. Through the above results, it is judged that the porous of optimum in the longitudinal direction of the Taewoo model perforated plate was about 2.6cm because it was found that the porosity which produced the lowest reflection and transmission coefficient and the highest energy dissipation. As a result of comparing this to the case where there was no porosity at all, it showed the function of wave absorbing about 31.60%.

Detecting Image of Void Shapes in Concrete Using Simulation Analysis Model of Reflection Wave of Electromagnetic Radar (전자파 레이더 모의해석에 의한 콘크리트 내부 공동형상별 화상검출 특성)

  • Park, Seok-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.229-232
    • /
    • 2005
  • More than effectively judging the existence of voids behind concrete tunnel linings or under concrete pavements, this research aims to develop the analysis algorithm of radar capable of estimation of the shape of specific voids. To detect or estimate void shapes in non-reinforced concrete, the simulation analysis model of transmission and reflection wave of electromagnetic radar is used. This radar simulation model is carried out with various void shapes. As the results, a proposed method in this study has a possibility of detecting or estimating void shapes with good accuracy.

  • PDF

Numerical study of propagation, reflection, and scattering of ultrasonic waves (초음파의 전파, 반사, 산란 현상에 대한 수치 시뮬레이션)

  • 임현준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.401-406
    • /
    • 2002
  • A numerical model is introduced to simulate propagation, reflection, and scattering of elastic waves in solids. The model consists of mass points and linear springs, interconnected with in a lattice structure; hence, its name, the mass-spring lattice model (MSLM). The MSLM has successfully been applied to the numerical simulation and visualization of various elastic wave phenomena involved in ultrasonic nondestructive testing (NDT). This method is useful to simulate, design, or analyze actual testing. Some representative examples of numerical simulation using the MSLM are presented, and future work necessary for its further development Is addressed.

  • PDF

Variation of Transient-response in Open-ended Microstrip Lines with Optically-controlled Microwave Pulses

  • Wang, Xue;Kim, Kwan-Woong;Kim, Yong-K.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.53-57
    • /
    • 2009
  • In this paper we develop a method to observe faults in semiconductor devices and transmission lines by calculating the variation of the reflection function in a dielectric microstrip line that has an open-ended termination containing an optically induced plasma region. It is analyzed with the assumption that the plasma is distributed homogeneously in laser illumination. With the non linear material of degradation, the concentration of the carrier in the part of the material has changed. Since the input wave has produced the phenomenon of reflection, the input signal to the open-ended microstrip lines can be observed on reflection to identify the location of the fault. The characteristic impedances resulting from the presence of plasma are evaluated by the transmission line model. The variation of the reflection wave in the microwave system has been calculated by using an equivalent circuit model. The transient response has been also evaluated theoretically for changing the phase of the variation in the reflection. The variation of characteristic response in differentially localized has been also evaluated analytically.

Analysis of Bragg Reflection of Waves due to Rectangular Impermeable Submerged Breakwaters with Two-Dimensional Finite Element Method (2차원 유한요소법을 이용한 불투과성 사각형 수중방파제의 Bragg 반사 해석)

  • Cho, Yong-Sik;Jeong, Woo-Chang
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.447-454
    • /
    • 2003
  • The Bragg reflection of monochromatic waves propagating over a rectangular-typed impermeable submerged breakwaters is numerically investigated by using the finite element method. The reflection coefficients calculated from the present model are compared with those of laboratory measurements and the eigenfunction expansion method. A good agreement is observed. The finite element model is also applied to calculate reflection coefficients according to variations of length and width of submerged breakwater.