• Title/Summary/Keyword: Reflectance difference

Search Result 241, Processing Time 0.032 seconds

Performance of Zoysia spp. and Axonopus compressus Turf on Turf-Paver Complex under Simulated Traffic

  • Chin, Siew-Wai;Ow, Lai-Fern
    • Weed & Turfgrass Science
    • /
    • v.5 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • Vehicular traffic on turf results in loss of green cover due to direct tearing of shoots and indirect long-term soil compaction. Protection of turfgrass crowns from wear could increase the ability of turf to recover from heavy traffic. Plastic turfpavers have been installed in trafficked areas to reduce soil compaction and to protect turfgrass crowns from wear. The objectives of this study were to evaluate traffic performance of turfgrasses (Zoysia matrella and Axonopus compressus) and soil mixture (high, medium and low sand mix) combinations on turf-paver complex. The traffic performance of turf and recovery was evaluated based on percent green cover determined by digital image analysis and spectral reflectance responses by NDVI-meter. Bulk density cores indicated significant increase in soil compaction from medium and low sand mixtures compared to high sand mixture. Higher reduction of percent green cover was observed from A. compressus (30-40%) than Z. matrella (10-20%) across soil mixtures. Both turf species displayed higher wear tolerance when established on higher sand (>50% sand) than low sand mixture. Positive turf recovery was also supported by complementary spectral responses. Establishment of Zoysia matrella turf on turfpaver complex using high sand mixture will result in improved wear tolerance.

AFM and Specular Reflectance IR Studies on the Surface Structure of Poly(ethylene terephthalate) Films upon Treatment with Argon and Oxygen Plasmas

  • Seo, Eun-Deock
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.134-140
    • /
    • 2004
  • Semi-crystalline poly(ethylene terephthalate) (PET) film surfaces were modified with argon and oxygen plasmas by radio-frequency (RF) glow discharge at 240 mTorr/40 W; the changes in topography and surface structure were investigated by atomic force microscopy (AFM) in conjunction with specular reflectance of infrared microspectroscopy (IMS). Under our operating conditions, analysis of the AFM images revealed that longer plasma treatment results in significant ablation on the film surface with increasing roughness, regardless of the kind of plasma used. The basic topographies, however, were different depending upon the kind of gas used. The specular reflectance analysis showed that the ablative mechanisms of the argon and oxygen plasma treatments are entirely different with one another. For the Ar-plasma-treated PET surface, no observable difference in the chemical structure was observed before and after plasma treatment. On the other hand, the oxygen-plasma-treated PET surface displays a significant decrease in the number of aliphatic C-H groups. We conclude that a constant removal of material from the PET surface occurs when using the Ar-plasma, whereas preferential etching of aliphatic C-H groups, with respect to, e.g. , carbonyl and ether groups, occurs upon oxygen plasma.

Multi-Spectral Reflectance of Warm-Season Turfgrasses as Influenced by Deficit Irrigation (난지형 잔디의 가뭄 스트레스 상태로 인한 멀티스팩트럴 반사광 연구)

  • Lee, Joon-Hee;Trenholm, Laurie. E.;Unruh, J. Bryan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • Remote sensing using multispectral radiometry may be a useful tool to detect drought stress in turf. The objective of this research was to investigate the correlation between drought stress and multispectral reflectance (MSR) from the turf canopy. St. Augustinegrass (Stenotaphrum secundatum[Walt.] Kuntze.) cultivars 'Floratam' and 'Palmetto', 'SeaIsle 1' seashore paspalum Paspalum vaginatum Swartz.), 'Empire' zoysiagrass (Zoysia japonica Steud.), and 'Pensacola' bahiagrass (Paspalum notatumFlugge) were established in lysimeters in the University of Florida Envirotron greenhouse facility in Gainesville. Irrigation was applied at 100%, 80%, 60%, or 40% of evapotranspiration (ET). Weekly evaluations included: a) shoot quality, leaf rolling, leaf firing b) soil moisture, chlorophyll content index; c) photosynthesis and d) multispectral reflectance. All the measurements were correlated with MSR data. Drought stress affected the infrared spectral region more than the visible spectral region. Reflectance sensitivity to water content of leaves was higher in the infrared spectral region than in the visible spectral region. Grasses irrigated at 100% and 80% of ET had no differences in normalized difference vegetation indices (NDVI), leaf area index (LAI), and stress indices. Grasses irrigated at 60% and 40% of ET had differences in NDVI, LAI, and stress indices. All measured wavelengths except 710nm were highly correlated (P < 0.0001) with turf visual quality, leaf firing, leaf rolling, soil moisture, chlorophyll content index, and photosynthesis. MSR could detect drought stress from the turf canopy.

Estimation of Refractive Index in MIR range from the Reflectance Measurements for IR Optics Materials (반사율 측정에 의한 적외선 광학재료의 중적외선 굴절률 추정)

  • Jin, Doo-han;Jeong, Kyung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.411-416
    • /
    • 2020
  • An optical arrangement has been set inside a photo-spectrometer to measure the reflectance of IR optics materials in mid IR range. The optical arrangement consists of equally spaced 4 gold coated full reflecting mirrors with the incidence angle of 45°. Baseline beam intensity IB has been measured while the beam proceeds through the 4 mirrors. Reflectance of a mirror has been estimated from the IB. And the beam intensity IS with the specimen in the optical path has been measured with the 4th mirror replaced with the specimen. Reflectance of the specimen has been estimated from the value of IS/IB. Then the estimated reflectance has been put in Fresnel equation relating reflectance and refractive index(RI) to estimate the RI of the material. Measurement has been made for sapphire, germanium, magnesium fluoride, and zinc sulfide. The estimated RI of the materials are closely matching with reference data and the maximum difference less than 2% over the wavelength range 3-5㎛ for all materials tested. As an FT-IR photo-spectrometer with a broadband wavelength infrared light source is used, this method has the advantage of measuring the refractive index at multiple wavelengths in a single measurement.

Evaluation of Biomass and Nitrogen Nutrition of Tobacco under Sand Culture by Reflectance Indices of Ground-based Remote Sensors (지상원격측정 센서의 반사율 지표를 활용한 사경재배 연초의 생체량 및 질소영양 평가)

  • Kang, Seong-Soo;Jeong, Hyun-Cheol;Jeon, Sang-Ho;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.70-78
    • /
    • 2009
  • Remote sensing technique in agriculture can be used to identify chlorophyll content, biomass, and yield caused from N stress level. This study was conducted to evaluate biomass, N stress levels, and yield of tobacco (Nicotiana tabacum L.) under sand culture in a plastic film house using ground-based remote sensors. Nitrogen rates applied were 40, 60, 80, 100, 120, and 140 percent of N concentration in the Hoagland's nutrient solution. Sensor readings for reflectance indices were taken at 30, 35, 40, 45, 50 and 60 days after transplanting(DAT). Reflectance indices measured at 40th DAT were highly correlated with dry weight(DW) of tobacco leaves and N uptake by leaves. Especially, green normalized difference vegetation index(gNDVI) from spectroradiometer and aNDVI from Crop Circle passive sensor were able to explain 85% and 84% of DW variability and 85% and 92% of N uptake variability, respectively. All the reflectance indices measured at each sampling date during the growing season were significantly correlated with tobacco yield. Especially the gNDVI derived from spectroradiometer readings at the 40th DAT explained 72% of yield variability. N rates of tobacco were distinguished by sufficiency index calculated using the ratio of reflectance indices of stress to optimum plot of N treatment. Consequently results indicate that the reflectance indices by ground-based remote sensor can be used to predict tobacco yield and recommend the optimum application rate of N fertilizer for top dressing of tobacco.

The Visual Changes of Colors by the Measuring Angle of Cotton/PET Union Fabrics (면(綿)/PET 교직물(交織物)의 측정각(測定角)에 따른 색변화 연구(色變化 硏究))

  • Lee, Mi-Kyung
    • Journal of Fashion Business
    • /
    • v.10 no.4
    • /
    • pp.151-162
    • /
    • 2006
  • This study investigated into the effects of the colors of warp and weft on the overall colors of fabrics, along with the visual changes of colors by the measuring angle of both warp and weft, by means of cross-dyeing of cotton/PET union fabrics. First, the reflectance of polyester is higher than that of cotton over the whole wavelength. Second, the dyeing of polyester uses the disperse dyes and that of cotton uses fiber-reactive dyes, the differences in the features of dyes and the reflectance of fabrics cause the same colors to be perceived different by the angle of observation. Third, the dyeing of cotton and PET fabrics individually with the same color revealed that the dyeing of cotton and PET fabrics in one bath resulted in a small difference in colors between the two fabrics than the separate dyeing in two bathes. In the case of one bath, the dyeing of PET fabrics followed by that of cotton fabrics resulted in a small difference in color than the dyeing in the reversed order. Fourth, when cotton/PET union fabrics were dyed in ten colors, the difference in colors between the two fabrics was small; and due to the difference in the density of warp and weft of union fabrics, some difference was detected in comparison with the results of separate dyeing of cotton and PET fabrics in one bath. The latter did not produce the changes in color which was recognizable with the naked eyes. Fifth, when cotton/PET union fabrics were dyed in ten colors, any color change was not observed by the measuring angle, and the inclination in the direction of warp or weft resulted in the tendency of color-deepening. In the measurement of the latter, the inclination in the direction of weft resulted in the higher color-deepening than that in the direction of warp, due to the influence of weft.

Measuring Method of Planar Displacement Referring to The Double Linear Patterns (이중화된 패턴을 참조하는 평면 변위 측정 방법)

  • Park, Sung Jun;Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4405-4410
    • /
    • 2015
  • Two-dimensional displacements are obtained from the sandwiched patterns, which superpose two linearly-periodic patterns orthogonally, respectively. The transparent top pattern is identified by deflection of the laser beam due to a difference of refractivity and the opaque bottom pattern is identified by deviation of the beam intensity due to a difference of reflectance. In the sample setup, the top pattern made up of build-up film is manufactured by UV laser machining and the bottom pattern is manufactured by ultra-precision trench machining and deposition for aluminum plate. The proposed decoding method is verified experimentally using the $10{\mu}m$ equally spaced sample patterns and the devised optical system. The Korea Academia-Industrial cooperation Society.

Near Infrared Spectroscopy for Measuring Soil Properties

  • Ryu, Kwan-Shig;Kim, Bok-Jin;Park, Woo-Churl;Cho, Rae-Kwang
    • Near Infrared Analysis
    • /
    • v.1 no.1
    • /
    • pp.37-41
    • /
    • 2000
  • The purpose of this research was to develop a the reflection technique with near infrared (NIR) radiation for estimating soil components. NIR reflectance was scanned at 2nm intervals from 1100 to 2500nm with an InfraAlyzer 500 (Bran & Luebbe Co.). Over 400 soil sample from fields of different crops and land-use over Youngnam and Honam regions were used to obtain mean diffuse reflection of the soil for the calibration and validation of the calibration set in estimating moisture, organic matter (OM) and total nitrogen (T-N) of the soils. Multiple linear regression (MLR) was used to evaluate the correlation of NIR spectroscopy method. Reflection pattern of NIR spectra for finely sized sample (<0.5mm) and coarsely sized soil(<2mm) did not show much difference. The results showed that NIR spectroscopy and coarsely sized soil (<2mm) did not show much difference. The results showed that NIR spectroscopy could be used as a routine soil testing method in estimating OM, moisture, T-N in soil samples simultaneously.

Characteristics of wave propagation in a sloping-wall-type wave absorber

  • Zhu, Lixin;Lim, Hee Chang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.843-848
    • /
    • 2015
  • The objective of this study is to observe and optimize a typical ocean environment and reduce wave reflections in the wave flume. In order to generate ocean waves in the wave flume, a combination of a horizontal piston type wave generator and wave absorbers was installed in the channel. Two probes for measuring the wave heights, i.e., wave level gauges, were used to record the continuous variation of the wave surface, the phase difference, and the maximum (crest) and minimum (trough) points of the propagating waves. In order to optimize the shape and size of the propagating waves, several absorption methods were proposed. Apart from an active wave absorption method, we used methods that involved vertical porous plates, horizontal punching plates, and sloping-wall-type wave absorbers. To obtain the best propagating waves, a sloping-wall-type wave absorber was chosen and tested in terms of the constitutive filling materials and the location and shape of the plate. This study also focused on the theoretical prediction of the wave surface, separating them into the incident and reflective components. From the results, it is evident that the wave absorber comprising a hard filling material exhibits a better performance than the absorber comprising a soft material, i.e., the wave absorber can be a strong sink to control the energy of the incoming wave. In addition, larger wave absorbers correspond to lower reflectance because a larger volume can reduce the incoming wave energy. Therefore, at constant absorber conditions, the reflectance of the wave increases as the wave period increases. Finally, the reflectance of the wave was controlled to be less than 0.1 in this study so that the wave flume can be used to simulate an offshore environment.