• 제목/요약/키워드: Reference wind speed

검색결과 141건 처리시간 0.025초

복합지형에 대한 WAsP의 풍속 예측성 평가 (Wind Speed Prediction using WAsP for Complex Terrain)

  • 윤광용;유능수;백인수
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.199-207
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

WAsP을 이용한 복잡지형의 풍속 예측 및 보정 (Wind Speed Prediction using WAsP for Complex Terrain)

  • 윤광용;백인수;유능수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.268-273
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

가변 풍속과 터뷸런스를 고려한 가변속 풍력 발전 시스템 시뮬레이터 개발 (Emulation of Variable Wind Speed and Turbulance Effect in a Wind Turbine Simulator)

  • 송승호;김동용;양인선;경남호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.290-296
    • /
    • 2006
  • Control algorithms and implementation issues for a wind turbine simulator are presented for realistic emulation of variable wind characteristics using a lab-scale motor and generator set. When the average wind speed nd turbulence level is given, the torque reference of prime mover is decided through various blocks, such as random wind speed generator, blade characteristic curves, and tower effect compensation. The variable nature of wind can be implemented and tested by not only the computer simulation but also the hardware-in-loop-simulator (HILS). Some application examples of HILS include the development and test of turbine control software for more efficient and stable operation. Feasibility of the proposed simulator has verified by computer simulations and experiment.

  • PDF

An Optimal Maximum Power Point Tracking Algorithm for Wind Energy System in Microgrid

  • Nguyen, Thanh-Van;Kim, Kyeong-Hwa
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.382-383
    • /
    • 2018
  • To increase the efficiency of a wind energy conversion system (WECS), the maximum power point tracking (MPPT) algorithm is usually employed. This paper proposes an optimal MPPT algorithm which tracks a sudden wind speed change condition fast. The proposed method can be implemented without the prior information on the wind turbine parameters, generator parameters, air density or wind speed. By investigating the directions of changes of the mechanical output power in wind turbine and rotor speed of the generator, the proposed MPPT algorithm is able to determine an optimal speed to achieve the maximum power point. Then, this optimal speed is set to the reference of the speed control loop. As a result, the proposed MPPT algorithm forces the system to operate at the maximum power point by using a three-phase converter. The simulation results based on the PSIM are given to prove the effectiveness of the proposed method.

  • PDF

해상풍력 구조물 설계를 위한 풍황 특성분석 (Analysis on wind condition characteristics for an offshore structure design)

  • 서현수;경남호;;김현구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.262-267
    • /
    • 2008
  • The long-term wind data are reconstructed from the short-term meteorological data to design the 4 MW offshore wind park which will be constructed at Woljeong-ri, Jeju island, Korea. Using two MCP (Measure-Correlate-Predict) models, the relative deviation of wind speed and direction from two neighboring reference weather stations can be regressed at each azimuth sector. The validation of the present method is checked about linear and matrix MCP models for the sets of measured data, and the characteristic wind turbulence is estimated from the ninety-percent percentile of standard deviation in the probability distribution. Using the Gumbel's model, the extreme wind speed of fifty-year return period is predicted by the reconstructed long-term data. The predicted results of this analysis concerning turbulence intensity and extreme wind speed are used for the calculation of fatigue life and extreme load in the design procedure of wind turbine structures at offshore wind farms.

  • PDF

가변속 풍력발전용 영구자석형 동기발전기의 퍼지 속도제어기 설계 (Fuzzy Speed Controller Design of Permanent Magnet Synchronous Generators for Variable-Speed Wind Turbine Systems)

  • 유동녕;최영식;최한호;정진우
    • 조명전기설비학회논문지
    • /
    • 제25권2호
    • /
    • pp.69-79
    • /
    • 2011
  • This paper proposes a new fuzzy speed control method based on Takagi-Sugeno fuzzy method of permanent magnet synchronous generators(PMSM) for variable-speed wind turbine systems. The proposed fuzzy speed controller consists of the control terms that compensate for the nonlinearity of PMSG and the control terms that stabilize the error dynamics. The conditions are derived for the existence of the proposed speed controller, and the gain matrices of the controller are given. The proposed control method can guarantee that the PMSG can effectively track the speed reference which is calculated through the MPPT control and can reduce the fluctuations of the generated power under even fast random wind conditions. To verify the performance of the proposed fuzzy speed controller, the simulation results are demonstrated.

Hybrid Reference Function for Stable Stepwise Inertial Control of a Doubly-Fed Induction Generator

  • Yang, Dejian;Lee, Jinsik;Hur, Kyeon;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.86-92
    • /
    • 2016
  • Upon detecting a frequency event in a power system, the stepwise inertial control (SIC) of a wind turbine generator (WTG) instantly increases the power output for a preset period so as to arrest the frequency drop. Afterwards, SIC rapidly reduces the WTG output to avert over-deceleration (OD). However, such a rapid output reduction may act as a power deficit in the power system, and thereby cause a second frequency dip. In this paper, a hybrid reference function for the stable SIC of a doubly-fed induction generator is proposed to prevent OD while improving the frequency nadir (FN). To achieve this objective, a reference function is separately defined prior to and after the FN. In order to improve the FN when an event is detected, the reference is instantly increased by a constant and then maintained until the FN. This constant is determined by considering the power margin and available kinetic energy. To prevent OD, the reference decays with the rotor speed after the FN. The performance of the proposed scheme was validated under various wind speed conditions and wind power penetration levels using an EMTP-RV simulator. The results clearly demonstrate that the scheme successfully prevents OD while improving the FN at different wind conditions and wind power penetration levels. Furthermore, the scheme is adaptive to the size of a frequency event.

회전자 속도에 따라 변동하는 풍력발전단지 주파수 편차 루프 제어 연구 (Control of the Wind Power Plant Frequency Variance Loop with Respect to Rotor Speed)

  • 이창민;최현준;박지훈;김성환
    • 신재생에너지
    • /
    • 제20권2호
    • /
    • pp.55-64
    • /
    • 2024
  • To ensure the frequency stability of wind power generation, we analyzedd the existing technology and proposedd a method for changing the gain value with respect to to the rotor speed by adding the MPPT reference value and output reference value that reflect the system frequency. The MPPT control and output were compared and calculated for performance verification. Subsequently, the application of the proposed algorithm led to an increased output when compared with that of the existing control method.

MW급 직접구동형 풍력터빈시스템을 위한 영구자석 동기발전기의 게인 스케쥴링 속도제어기에 대한 연구 (A Study on the Gain Scheduling Speed Controller of Permanent Magnet Synchronous Generators for MW-Class Direct-Driven Wind Turbine Systems)

  • 최영식;유동녕;최한호;정진우
    • 조명전기설비학회논문지
    • /
    • 제25권8호
    • /
    • pp.48-59
    • /
    • 2011
  • This paper presents a new gain scheduling speed controller of permanent magnet synchronous generators(PMSG) for MW-class direct-driven wind turbine systems. The proposed gain scheduling speed controller performs the speed tracking at more than one operating point, and the first-order torque observer estimates the turbine torque which is needed to precisely control the speed of PMSG. The proposed speed controller verifies that the PMSG can successfully follow the reference speed which is determined via the maximum power point tracking(MPPT) control and pitch control under turbulent wind conditions. The proposed speed control algorithm is simulated using Simulink and its performance is confirmed through comparison with the results by PI control method.

Power Smoothening Control of Wind Farms Based on Inertial Effect of Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Kang, Jong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1096-1103
    • /
    • 2014
  • This paper proposes a novel strategy for attenuating the output power fluctuation of the wind farm (WF) in a range of tens of seconds delivered to the grid, where the kinetic energy caused by the large inertia of the wind turbine systems is utilized. A control scheme of the two-level structure is applied to control the wind farm, which consists of a supervisory control of the wind farm and individual wind turbine controls. The supervisory control generates the output power reference of the wind farm, which is filtered out from the available power extracted from the wind by a low-pass filter (LPF). A lead-lag compensator is used for compensating for the phase delay of the output power reference compared with the available power. By this control strategy, when the reference power is lower than the maximum available power, some of individual wind turbines are operated in the storing mode of the kinetic energy by increasing the turbine speeds. Then, these individual wind turbines release the kinetic power by reducing the turbine speed, when the power command is higher than the available power. In addition, the pitch angle control systems of the wind turbines are also employed to limit the turbine speed not higher than the limitation value during the storing mode of kinetic energy. For coordinating the de-rated operation of the WT and the storing or releasing modes of the kinetic energy, the output power fluctuations are reduced by about 20%. The PSCAD/EMTDC simulations have been carried out for a 10-MW wind farm equipped with the permanent-magnet synchronous generator (PMSG) to verify the validity of the proposed method.