• Title/Summary/Keyword: Reference fuel

Search Result 323, Processing Time 0.031 seconds

Overcoming the challenges of Monte Carlo depletion: Application to a material-testing reactor with the MCS code

  • Dos, Vutheam;Lee, Hyunsuk;Jo, Yunki;Lemaire, Matthieu;Kim, Wonkyeong;Choi, Sooyoung;Zhang, Peng;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1881-1895
    • /
    • 2020
  • The theoretical aspects behind the reactor depletion capability of the Monte Carlo code MCS developed at the Ulsan National Institute of Science and Technology (UNIST) and practical results of this depletion feature for a Material-Testing Reactor (MTR) with plate-type fuel are described in this paper. A verification of MCS results is first performed against MCNP6 to confirm the suitability of MCS for the criticality and depletion analysis of the MTR. Then, the dependence of the effective neutron multiplication factor to the number of axial and radial depletion cells adopted in the fuel plates is performed with MCS in order to determine the minimum spatial segmentation of the fuel plates. Monte Carlo depletion results with 37,800 depletion cells are provided by MCS within acceptable calculation time and memory usage. The results show that at least 7 axial meshes per fuel plate are required to reach the same precision as the reference calculation whereas no significant differences are observed when modeling 1 or 10 radial meshes per fuel plate. This study demonstrates that MCS can address the need for Monte Carlo codes capable of providing reference solutions to complex reactor depletion problems with refined meshes for fuel management and research reactor applications.

An Analysis on the Deep Geological Disposal Concepts Considering the Spent Fuel Length (사용후핵연료 길이에 따른 심지층 처분시스템 분석)

  • LEE, Jongyoul;KIM, Hyeona;LEE, Minsoo;CHOI, Heuijoo;KIM, Keonyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.201-209
    • /
    • 2015
  • Currently, 23 nuclear power plants are in operation at Kori, Uljin, Younggwang and Wolsong site and a reference deep geological disposal system has been developed for the spent fuels generated by them. The reference spent fuel for this disposal system has 4.5wt% of initial enrichment, 55 GWd/MtU of burn-up, and 40 years of cooling time. In this paper, to improve disposal efficiency and economic feasibility, the characteristics of spent fuels from nuclear power plants, such as type and burn-up, were reviewed. A disposal canister concept for shorter length and relatively lower burn-up spent fuels than the reference spent fuels was developed. Based on this canister concept, thermal analyses were carried out and a deep geological disposal concept was proposed. Measures of disposal efficiency such as unit disposal area and disposal density were compared between this disposal system and the reference disposal system. Also, economic feasibility, such as the volume reduction of copper, cast iron, and bentonite, was analyzed and the results of these analyses showed that the disposal system proposed in this paper has an efficiency of at least 20%. These results could be used for establishing spent fuel management policy and designing practical disposal systems for spent fuels.

Possibility of curium as a fuel for VVER-1200 reactor

  • Shelley, Afroza;Ovi, Mahmud Hasan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • In this research, curium oxide (CmO2) is studied as fuel for VVER-1200 reactor to get an attention to its energy value and possibilities. For this purpose, CmO2 is used in fuel rods or integrated burnable absorber (IBA) rods with and without UO2 and then compared with the conventional fuel assembly of VVER-1200 reactor. It is burned to 60 GWd/t by using SRAC-2006 code and JENDL-4.0 data library. From these studies, it is found that CmO2 is competent like UO2 as a fuel due to higher fission cross-section of 243Cm and 245Cm isotopes and neutron capture cross-section of 244Cm and 246Cm isotopes. As a result, when some or all of the UO2 of fuel rods or IBA rods are replaced by CmO2, we get a similar k-inf like the reference even with lower enrichment UO2 fuels. These studies show that the use of CmO2 as IBA rods is more effective than the fuel rods considering the initially loaded amount, power peaking factor (PPF), fuel temperature and void coefficient, and the quality of spent fuel. From a detailed study, 3% CmO2 with inert material ZrO2 in IBA rods are recommended for the VVER-1200 reactor assembly from the once through concept.

Evaluation of Effects of Impurities in Nuclear Fuel and Assembly Hardware on Radiation Source Term and Shielding

  • Taekyung Lee;Dongjin Lee;Kwangsoon Choi;Hyeongjoon Yun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.193-204
    • /
    • 2023
  • To ensure radiological safety margin in the transport and storage of spent nuclear fuel, it is crucial to perform source term and shielding analyses in advance from the perspective of conservation. When performing source term analysis on UO2 fuel, which is mostly used in commercial nuclear power plants, uranium and oxygen are basically considered to be the initial materials of the new fuel. However, the presence of impurities in the fuel and structural materials of the fuel assembly may influence the source term and shielding analyses. The impurities could be radioactive materials or the stable materials that are activated by irradiation during reactor power operation. As measuring the impurity concentration levels in the fuel and structural materials can be challenging, publicly available information on impurity concentration levels is used as a reference in this evaluation. To assess the effect of impurities, the results of the source term and shielding analyses were compared depending on whether the assumed impurity concentration is considered. For the shielding analysis, generic cask design data developed by KEPCO-E&C was utilized.

Performance Variation of a Combined Cycle Power Plant by Coolant Pre-cooling and Fuel Pre-heating (냉각공기 예냉각과 연료예열에 의한 복합발전 시스템의 성능변화)

  • Kwon, Ik-Hwan;Kang, Do-Won;Kim, Tong-Seop;Kim, Jae-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.57-63
    • /
    • 2012
  • Effects of coolant pre-cooling and fuel pre-heating on the performance of a combined cycle using a F-class gas turbine were investigated. Coolant pre-cooling results in an increase of power output but a decrease in efficiency. Performance variation due to the fuel pre-heating depends on the location of the heat source for the pre-heating in the bottoming cycle (heat recovery steam generator). It was demonstrated that a careful selection of the heat source location would enhance efficiency with a minimal power penalty. The effect of combining the coolant pre-cooling and fuel pre-heating was also investigated. It was found that a favorable combination would yield power augmentation, while efficiency remains close to the reference value.

Optimization of a Wire-Spacer Fuel Assembly of Liquid Metal reactor

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.240-243
    • /
    • 2005
  • This study deals with the shape optimization of a wire spacer fuel assembly of Liquid Metal Reactors (LMRs). The Response Surface based optimization Method is used as an optimization technique with the Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer using Shear Stress Transport (SST) turbulence model as a turbulence closure. Two design variables namely, pitch to fuel rod diameter ratio and lead length to fuel rod diameter ratio are selected. The objective function is defined as a combination of the heat transfer rate and the inverse of friction loss with a weighting factor. Three level full-factorial method is used to determine the training points. In total, nine experiments have been performed numerically and the resulting datas have been analysed for optimization study. Also, a comparison has been made between the optimized surface and the reference one in this study.

  • PDF

In-pile Test Results of HANA Claddings in Halden Research Reactor

  • Baek, Jong-Hyuk;Choi, Byoung-Kwon;Jeong, Yong-Hwan;Jung, Yun-Ho;Kim, Kyu-Tae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.425-426
    • /
    • 2005
  • 1. The oxide thickness on the fuelled test rods was within the following range from 7 ${\mu}m$ to 17 ${\mu}m$. In general, the HANA claddings showed better corrosion behavior than the two reference alloys (A-Cladding and Zr-4). 2. The weight gains of corrosion coupons were ranged from 21 to 56 mg/$dm^2$.

  • PDF

Thermal Stress Analysis on the Solid Oxide Fuel Cell according to Operating Temperature

  • Kwon, Oh-Heon;Kang, Ji-Woong;Jo, Se-Jin
    • International Journal of Safety
    • /
    • v.10 no.1
    • /
    • pp.1-4
    • /
    • 2011
  • The fuel cell is one of the green energy receiving a lot of attention. Among the fuel cells, it is generally referred to SOFC(solid oxide fuel cell) which is made up composites of a solid. SOFC has excellent merits in the side of environment and energy. However because of the high operating temperature, it has economic loss by the using of expensive materials and problems of structural instability by thermal stresses. Therefore, this study aims to the effect of analysis by the FEMLAB. The results have deformations and the maximum stresses from the variation of the thickness of vulnerability spots. The deformation shows expansion as 0.82% and the stress ${\sigma}_{xx}$ is 392MPa in electrolyte and -56.31MPa in anode. When increasing or decreasing the thickness to 50% of the reference thickness about the electrolyte which is vulnerable spots.

  • PDF

Air Fuel Ratio and Calculation According to Fuel Composition (III) -Comparison of Various Calculation Method- (연료 조성에 따른 공연비 산정 (III) - 공연비 계산방식간의 상호 비교 -)

  • Park Chanjun;Ohm Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1147-1154
    • /
    • 2004
  • This paper is the third of several companion papers which compare the method of Air-Fuel ratio determination. In the previous works, Eltinge chart was expanded to arbitrary fuel composition as a reference exhaust composition. The compensation of unburned hydrocarbon in Eltinge chart and comparison of Spindt and Eltinge method were also discussed. In addition to Eltinge and Spindt's one, however, there are many methods which calculate Air-Fuel ratio from exhaust emission. Among these methods, carbon balance and oxygen balance are widely used in practice. In some applications, linear formula from statistical method is being used in the field due to its simplicity and convenience. In this paper, these various methods are evaluated and compared with Eltinge results and new linear formula is proposed for the gasoline fuel. The results show that the corrected carbon balance equation has excellent agreement with Eltinge and Spindt's one. On the other hands, the oxygen-balanced formula has a limitation according to the mixture state and AFR. For gasoline fuel, newly proposed linear equation has good compatibility with Eltinge and Spindt up to AFR 17.

Development of Automatic Nuclear Fuel Rod Character Recognition System Based on Image Processing Technique (영상처리기술을 이용한 핵 연료봉 문자 자동인식시스템 개발)

  • Woong Ki Kim;Yong Bum Lee;Jong Min Lee;Sung IL Chien
    • Nuclear Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.424-429
    • /
    • 1993
  • Numeric characters are printed at the end part of nuclear fuel rod containing nuclear pellets. Fuel rods are discriminated and managed systematically by these characters in the process of producing fuel assembly. The characters are also used to examine manufacturing process of fuel rods in the survey of burnup efficiency as well as in inspection of irradiated fuel rod. Therefore automatic character recognition is one of the most important technologies in automatic manufacture of fuel assembly. In this study, character recognition system is developed. In the developed system, mesh feature extracted from each character written in the fuel rod has been compared with reference feature value stored in database, and the character is thus identified. In the result of experiment, 95.83 percent recognition rate is achievable.

  • PDF