• Title/Summary/Keyword: Reference Orbit

Search Result 109, Processing Time 0.033 seconds

Baseline Refinement for Topographic Phase Estimation using External DEM

  • Lee, Chang-Won;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.460-464
    • /
    • 2002
  • Multitemporal interferometric SAR has became an useful geodetic tool for monitoring Earth's surface deformation, generation of precise DEM, and land cover classification even though there still exist certain constraints such as temporal and spatial decorrelation effects, atmospheric artifacts and inaccurate orbit information. The Korea where nearly all areas are heavily vegetated, JERS-1 SAR has advantages in monitoring surface deformations and environmental changes in that it uses 4-times longer wavelength than ERS-l/2 or RADARSAT SAR system. For generating differential SAR interferogram and differential coherence image fer deformation mapping and temporal change detection, respectively, topographic phase removal process is required utilizing a reference inteferogram or external DEM simulation. Because the SAR antenna baseline parameter for JERS-1 is less accurate than those of ERS-l/2, one can not estimate topographic phases from an external DEM and the residual phase appears in differential interferogram. In this paper, we examined topographic phase retrieval method utilizing an external DEM. The baseline refinement is carried out by minimizing the differences between the measured unwrapped phase and the reference points of the DEM.

  • PDF

Design of the Feedback Controller of Direct Satellite Broadcasting Antenna for Vehicle (이동체용 직접위성방송 수신 안테나의 궤환 제어기 설계)

  • Kim, Ki-Yeoul;Park, Chong-Kug
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.53-56
    • /
    • 2001
  • In this paper we discuss a direct satellite broadcasting system for vehicle. The proposed satellite-steering algorithm and controller based on it are designed for a communication and broadcasting system which uses the Mugungwha satellite. The Mugungwha satellite that the proposed system should steer is a geostationary orbit device. The satellite-steering algorithm computes azimuth and elevation with reference to a stationary point on earth. This is extended to a real satellite steering algorithm that considers position and attitude. Real moving position and attitude are represented by latitude, longitude, roll, pitch and yaw. To apply these five pieces of information to the reference satellite steering algorithm, we introduce Euler's degree coordinates that express independently the rotation of each axis relative to an axis. There are two ways a basic algorithm of the antenna of a vehicle can track and orient to satellite. One way is a feedback loop method for broadcasting gain, while the other is a feedback loop method for position and attitude of a vehicle. In the present paper, we design a controller of satellite broadcasting system for a vehicle using an algorithm that combines the two methods. We performed a simulation and experiment to prove effectiveness.

  • PDF

The RLG's Power Supply Design for Attitude Control in the Satellite (저궤도 위성 자세제어용 센서 RLG 전원 공급기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1488-1490
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch, The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

  • PDF

Land Cover Classification Map of Northeast Asia Using GOCI Data

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.83-92
    • /
    • 2019
  • Land cover (LC) is an important factor in socioeconomic and environmental studies. According to various studies, a number of LC maps, including global land cover (GLC) datasets, are made using polar orbit satellite data. Due to the insufficiencies of reference datasets in Northeast Asia, several LC maps display discrepancies in that region. In this paper, we performed a feasibility assessment of LC mapping using Geostationary Ocean Color Imager (GOCI) data over Northeast Asia. To produce the LC map, the GOCI normalized difference vegetation index (NDVI) was used as an input dataset and a level-2 LC map of South Korea was used as a reference dataset to evaluate the LC map. In this paper, 7 LC types(urban, croplands, forest, grasslands, wetlands, barren, and water) were defined to reflect Northeast Asian LC. The LC map was produced via principal component analysis (PCA) with K-means clustering, and a sensitivity analysis was performed. The overall accuracy was calculated to be 77.94%. Furthermore, to assess the accuracy of the LC map not only in South Korea but also in Northeast Asia, 6 GLC datasets (IGBP, UMD, GLC2000, GlobCover2009, MCD12Q1, GlobeLand30) were used as comparison datasets. The accuracy scores for the 6 GLC datasets were calculated to be 59.41%, 56.82%, 60.97%, 51.71%, 70.24%, and 72.80%, respectively. Therefore, the first attempt to produce the LC map using geostationary satellite data is considered to be acceptable.

Development of a Combined GPS/GLONASS PPP Method

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Precise Point Positioning (PPP) is a stand-alone precise positioning approach. As the quality of satellite orbit and clock products from analysis centers has been improved, PPP can provide more precise positioning accuracy and reliability. A combined use of Global Positioning System (GPS) and Global Orbiting Navigation Satellite System (GLONASS) in PPP is now available. In this paper, we explained about an approach for combined GPS and GLONASS PPP measurement processing, and validated the performance through the comparison with GPS-only PPP results. We also used the measurement obtained from the GRAS reference station for the performance validation. As a result, we found that the combined GPS/GLONASS PPP can yield a more precise positioning than the GPS-only PPP.

Analysis and Test results for the EOS(Electro Optical Subsystem) geometric mapping of the KOMPSAT2 Telescope

  • Jung Dae-Jun;Jang Hong-Sul;Lee Seung-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.489-492
    • /
    • 2005
  • As a former level of MSC(Multi Spectral Camera) telescope of the KOMPSA T2satellite, the several performance tests of EOS(Electro Optical Subsystem) were performed in the EOS level. By these tests, not only the design requirement of payload can be verified but also the test result can be the important criterion to estimate the performance of payload in the launch and space orbit environment. The EOS Geometric Mapping test is to verify the accuracy of the alignment & assembly on the Subsystem of the MSC by measurement like these; LOS(Line of Sight), LOD(Line of Detector), Band to Band Registration, Optical Distortion and Reference Cube. This paper describes the test results and the analysis for the EOS Geometric Mapping.

  • PDF

The principles and Applications of Outdoor & Indoor GPS(Global Positioning System) (옥내 외 위치정보측정시스템의 원리와 응용)

  • Moon, Hank
    • Journal of the Korean Professional Engineers Association
    • /
    • v.41 no.5
    • /
    • pp.55-58
    • /
    • 2008
  • GPS is the global Navigation Satellite System which is developed by the United States Department of Defense as an abbreviation of the Global Positioning System. The GPS uses a constellation of 24 Medium Earth Orbit satellites that transmit precise microwave signals, that enable GPS receivers to determine their location, speed, direction, and time. Following, the shooting down of Korean Air Lines Flight 007 in 1983. President Ronald Reagan issued a directive making the system available free for civilian use as a common good. Since then, GPS has become a widely used aid to navigation worldwide, and a useful tool for map-making, land surveying, commerce, scientific uses, and hobbies such as geocaching. GPS also provides a precise time reference used in many applications including scientific study of earthquakes, and synchronization of telecommunications networks.

  • PDF

Multi-GNSS Kinematic Precise Point Positioning: Some Results in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 2017
  • Precise Point Positioning (PPP) method is based on dual-frequency data of Global Navigation Satellite Systems (GNSS). The recent multi-constellations GNSS (multi-GNSS) enable us to bring great opportunities for enhanced precise positioning, navigation, and timing. In the paper, the multi-GNSS PPP with a combination of four systems (GPS, GLONASS, Galileo, and BeiDou) is analyzed to evaluate the improvement on positioning accuracy and convergence time. GNSS observations obtained from DAEJ reference station in South Korea are processed with both the multi-GNSS PPP and the GPS-only PPP. The performance of multi-GNSS PPP is not dramatically improved when compared to that of GPS only PPP. Its performance could be affected by the orbit errors of BeiDou geostationary satellites. However, multi-GNSS PPP can significantly improve the convergence speed of GPS-only PPP in terms of position accuracy.

Attitude determination for three-axis stabilized satellite

  • Kim, Jinho;Lew, Changmo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.110-114
    • /
    • 1995
  • This paper presents the on-board attitude determination algorithm for LEO (Low Earth Orbit) three-axis stabilized spacecraft. Two advanced star trackers and a three-axis Inertial Reference Unit (IRU) are assumed to be attitude sensors. The gyro in the IRU provides a direct measurement of the attitude rates. However, the attitude estimation error increases with time due to the gyro drift and noise. An update filter with measurements of star trackers and/or sun sensor is designed to update these gyro drift bias and to compensate the attitude error. Kalman Filter is adapted for the on-board update filter algorithm. Simulation results will be presented to investigate the attitude pointing performance.

  • PDF

MOTION IN PARABOLIC CYLINDRICAL COORDINATES: APPLICATION TO J2 GRAVITY PERTURBED TRAJECTORIES

  • Sharaf, M.A.;Selim, H.H.;Saad, A.S.
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.4
    • /
    • pp.147-150
    • /
    • 2006
  • In this paper, initial value problem for dynamical astronomy will be established using parabolic cylindrical coordinates. Computation algorithm is developed for the initial value problem of gravity perturbed trajectories. Applications of the algorithm for the problem of final state predication are illustrated by numerical examples of seven test orbits of different eccentricities. The numerical results are extremely accurate and efficient in predicating final state for gravity perturbed trajectories which is of extreme importance for scientific researches as well as for military purposes. Moreover, an additional efficiency of the algorithm is that, for each of the test orbits, the step size used for solving the differential equations of motion is larger than 70% of the step size used for obtaining its reference final state solution.