• Title/Summary/Keyword: Reference Evapotranspiration

Search Result 83, Processing Time 0.029 seconds

Seasonal changes in pan evaporation observed in South Korea and their relationships with reference evapotranspiration

  • Woo, Yin San;Paik, Kyungrock
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.183-183
    • /
    • 2017
  • Pan evaporation (Epan) is an important indicator of water and energy balance. Despite global warming, decreasing annual Epan has been reported across different continents over last decades, which is claimed as pan evaporation paradox. However, such trend is not necessarily found in seasonal data because the level of contributions on Epan vary among meteorological components. This study investigates long-term trend in seasonal pan evaporation from 1908 to 2016 across South Korea. Meteorological variables including air temperature (Tair), wind speed (U), vapor pressure deficit (VPD), and solar radiation (Rs) are selected to quantify the effects of individual contributing factor to Epan. We found overall decreasing trend in Epan, which agrees with earlier studies. However, mixed tendencies between seasons due to variation of dominant factor contributing Epan were found. We also evaluated the reference evapotranspiration based on Penman-Monteith method and compared this with Epan to better understand the physics behind the evaporation paradox.

  • PDF

Estimating upland crop water use in Jeju (제주도 밭작물 용수량 산정방법)

  • Lee, Yong-Il;Kim, Hyeon-Soo;Lim, Han-Cheol;Song, Chang-Khil;Moon, Kyung-Hwan;Kang, Bong-Kyoon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.247-250
    • /
    • 2003
  • Crop evapotranspiration rates of the garlic and potato were measured in a lysimeter at National Jeju Agricultural Experiment Station, Rural Development Administration, Korea. The crop coefficients were calculated using the values of the actually measured evapotranspiration(ETcrop) and the reference crop evapotranspiration (ETo) estimated by the Penman-Monteith equation. The maximum crop coefficients of the potato and garlic were 1.07 and 1.31 respectively. A water requirement model using the moisture accounting method is presented. The moisture accounting method is illustrated by the example (Table 2). As soon as the accumulated deficit exceeds 22 mm, a further irrigation is supplied.

  • PDF

Estimating upland crop water use in Jeju (제주도 밭작물 용수량 산정방법)

  • Lee, Yong-Il;Kim, Hyeon-Soo;Lim, Han-Cheo;Song, Chang-Khil;Moon, Kyung- Hwan;Kang, Bong-Kyoon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.32-37
    • /
    • 2005
  • Crop evapotranspiration rates of the garlic, potato and carrot were measured in a lysimeter at the National Institute of Subtropical Agriculture. The crop coefficients were calculated using the values of the actually measured evapotranspiration(ETcrop) and the reference crop evapotranspiration (ETo) estimated by the Penman-Monteith equation. The maximum crop coefficients of the garlic, potato, carrot and cabbage were 1.07, 1.07, 0.73 and 0.92 respectively. For the Citrus Aoshima Unshiu and Hallabong in the plastic house, the maximum crop coefficients were 1.38 and 1.29 respectively. Computer program using EXCEL was also developed to estimate the crop water use.

  • PDF

Simulation of Soil Hydrological Components in Chuncheon over 30 years Using E-DiGOR Model

  • Aydin, Mehmet;Jung, Yeong-Sang;Yang, Jae-E.;Lee, Hyun-Il;Kim, Kyung-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.484-491
    • /
    • 2012
  • The hydrological components of a sandy loam soil of nearly level in Chuncheon over 30 years were computed using the E-DiGOR model. Daily simulations were carried out for each year during the period of 1980 to 2009 using standard climate data. Reference evapotranspiration and potential soil evaporation based on Penman-Montheith model were higher during May to August because of the higher atmospheric evaporative demand. Actual soil evaporation was mainly found to be a function of the amount and timing of rainfall, and presumably soil wetness in addition to atmospheric demand. Drainage was affected by rainfall and increased with a higher amount of precipitation and soil water content. Excess drainage occurred throughout rainy months (from July to September), with a peak in July. Therefore, leaching may be a serious problem in the soils all through these months. The 30-year average annual reference evapotranspiration and potential soil evaporation were 951.5 mm and 714.2 mm, respectively. The actual evaporation from bare soil varied between 396.9-528.4 mm and showed comparatively lesser inter-annual variations than drainage. Annual drainage rates below 120 cm soil depth ranged from 477.8 to 1565.9 mm. The long-term mean annual drainage-loss was approximately two times higher than actual soil evaporation.

Evaluation of Urban Effects on Trends of Hydrometeorological Variables (수문기상요소 추세에 대한 도시화 영향분석)

  • Rim, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.71-80
    • /
    • 2010
  • This study aimed to figure out the effect of urbanization on meteorological variables (air temperature, wind speed, relative humidity, solar radiation and precipitation) and reference evapotranspiration (RET). The research area of 6 urban areas and 6 rural areas near each urban area was selected. The monthly average daily data were collected from 12 ground stations operated by Korea Meteorological Administration (KMA) and the changes in climate variables were analyzed. Results of annual analysis have shown that the reference evapotranspiration (RET) tends to increase in urban areas while decreasing in rural areas. In particular, due to rising RET in urban areas and decreasing RET in rural areas, we can infer that the urbanization has affected to the RET. Results of monthly analysis showed that the urbanization has effects on the RET of July compared to other months (January, April and October). The yearly and monthly effects of urbanization on RET were closely related to solar radiation, relative humidity and change in temperature, and related to wind speed.

Reference evapotranspiration estimates based on meteorological variables over Korean agro-climatic zones for rice field (남한지역의 논 농업기후지대에 대한 기상자료 기반의 기준 증발산량 추정)

  • Jung, Myung-Pyo;Hur, Jina;Shim, Kyo-Moon;Kim, Yongseok;Kang, Kee-Kyung;Choi, Soon-Kun;Lee, Byeong-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.229-237
    • /
    • 2019
  • This study was conducted to estimate annual reference evapotranspiration (ET0) for the agro-climatic zones for rice paddy fields in South Korea between 1980 and 2015. The daily ET0 was estimated by applying the Penman-Monteith method to meteorological data from 61 weather stations provided by Korean Meteorological Administration (KMA). The average of annual ET0 from 1980 to 2015 was 1334.1±33.89 mm. The ET0 was the highest at the Southern Coastal Zone due to their higher air temperature and lower relative humidity. The ET0 had significantly increased with 2.81 mm/yr for the whole zones over 36 years. However, the change rate of it was different among agro-climatic zones. The annual ET0 highly increased in central zones and eastern coastal zones. In terms of correlation coefficient, the temporal change of the annual ET0 was closely related to variations of four meteorological factors (i.e., mean, minimum temperatures, sunshine duration, and relative humidity). The results demonstrated that whole Korean agro-climatic zones have been undergoing a significant change in the annual ET0 for the last 36 years. Understanding the spatial pattern and the long-term variation of the annual ET0 associated with global warming would be useful to improve crop and water resource managements at each agro-climatic zone of South Korea.

Long-term forecasting reference evapotranspiration using statistically predicted temperature information (통계적 기온예측정보를 활용한 기준증발산량 장기예측)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1243-1254
    • /
    • 2021
  • For water resources operation or agricultural water management, it is important to accurately predict evapotranspiration for a long-term future over a seasonal or monthly basis. In this study, reference evapotranspiration forecast (up to 12 months in advance) was performed using statistically predicted monthly temperatures and temperature-based Hamon method for the Han River basin. First, the daily maximum and minimum temperature data for 15 meterological stations in the basin were derived by spatial-temporal downscaling the monthly temperature forecasts. The results of goodness-of-fit test for the downscaled temperature data at each site showed that the percent bias (PBIAS) ranged from 1.3 to 6.9%, the ratio of the root mean square error to the standard deviation of the observations (RSR) ranged from 0.22 to 0.27, the Nash-Sutcliffe efficiency (NSE) ranged from 0.93 to 0.95, and the Pearson correlation coefficient (r) ranged from 0.97 to 0.98 for the monthly average daily maximum temperature. And for the monthly average daily minimum temperature, PBIAS was 7.8 to 44.7%, RSR was 0.21 to 0.25, NSE was 0.94 to 0.96, and r was 0.98 to 0.99. The difference by site was not large, and the downscaled results were similar to the observations. In the results of comparing the forecasted reference evapotranspiration calculated using the downscaled data with the observed values for the entire region, PBIAS was 2.2 to 5.4%, RSR was 0.21 to 0.28, NSE was 0.92 to 0.96, and r was 0.96 to 0.98, indicating a very high fit. Due to the characteristics of the statistical models and uncertainty in the downscaling process, the predicted reference evapotranspiration may slightly deviate from the observed value in some periods when temperatures completely different from the past are observed. However, considering that it is a forecast result for the future period, it will be sufficiently useful as information for the evaluation or operation of water resources in the future.

A Study on Variation in Annual Water Balance (도시화에 따른 수문기후변화 I (연 물수지 변화 분석))

  • Rim, Chang-Soo;Chae, Hyo-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.555-570
    • /
    • 2007
  • The effects of climatic changes owing to urbanization on annual water balance have been studied. In this study, 56 meteorological stations including Seoul metropolis in South Korea have been selected, and the area of study site is $314\;km^2$. The meteorological station is centrally located in the study area with a 10 km radius. Land use status of study area was examined to estimate the urbanization extent, so that annual actual evapotranspiration could be estimated. Annual runoff was estimated by annual water balance approach using the estimated annual actual evapotranspiration and measured annual precipitation. Annual actual evapotranspiration was estimated by applying experimental equation suggested by Zhang et al, (2001) which was evaluated from 250 watersheds all over the world. Study results show that reference evapotranspiration is tending upwards due to urbanization; therefore, it seems that climatic change due to urbanization may increase the amount of annual actual evapotranspiration. However, the increase of residential area due to urbanization in study area may decrease the amount of annual actual evapotranspiration. The study results indicate that urbanization effect on annual trend of precipitation was not significant. In urban area, annual runoff is directly affected by annual precipitation, and compared with annual precipitation, annual variation of actual evapotranspiration was not significant even though it was estimated by using annual precipitation. It seems that the effect of urbanization on annual actual evapotranspiration does not influence on annual runoff significantly, and that urbanization effect on annual runoff Is not significant.

Agricultural Irrigation Control using Sensor-enabled Architecture

  • Abdalgader, Khaled;Yousif, Jabar H.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3275-3298
    • /
    • 2022
  • Cloud-based architectures for precision agriculture are domain-specific controlled and require remote access to process and analyze the collected data over third-party cloud computing platforms. Due to the dynamic changes in agricultural parameters and restrictions in terms of accessing cloud platforms, developing a locally controlled and real-time configured architecture is crucial for efficient water irrigation and farmers management in agricultural fields. Thus, we present a new implementation of an independent sensor-enabled architecture using variety of wireless-based sensors to capture soil moisture level, amount of supplied water, and compute the reference evapotranspiration (ETo). Both parameters of soil moisture content and ETo values was then used to manage the amount of irrigated water in a small-scale agriculture field for 356 days. We collected around 34,200 experimental data samples to evaluate the performance of the architecture under different agriculture parameters and conditions, which have significant influence on realizing real-time monitoring of agricultural fields. In a proof of concept, we provide empirical results that show that our architecture performs favorably against the cloud-based architecture, as evaluated on collected experimental data through different statistical performance models. Experimental results demonstrate that the architecture has potential practical application in a many of farming activities, including water irrigation management and agricultural condition control.

Evaluation of Meteorological Elements Used for Reference Evapotranspiration Calculation of FAO Penman-Monteith Model (FAO Penman-Monteith 모형의 증발산량 산정에 이용되는 기상요소의 평가)

  • Hur, Seung-Oh;Jung, Kang-Ho;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.274-279
    • /
    • 2006
  • The exact estimation of crop evapotranspiration containing reference or potential evapotranspiration is necessary for decision of crop water requirements. This study was carried out for the evaluation and application of various meteorological elements used for the calculation of reference evapotranspiration (RET) by FAO Penman-Monteith (PM) model. Meteorological elements including temperature, net radiation, soil heat flux, albedo, relative humidity, wind speed measured by meteorological instruments are required for RET calculation by FAO PM model. The average of albedo measured for crop growing period was 0.20, ranging from 0.12 to 0.23, and was slightly lower than 0.23. Determinant coefficients by measured albedo and green grass albedo were 0.97, 0.95 and standard errors were 0.74, 0.80 respectively. Usefulness of deductive regression models was admitted. To assess an influence of soil heat flux (G) on FAO PM, RET with G=0 was compared with RETs using G at 5cm soil depth ($G_{5cm}$) and G at surface ($G_{0cm}$). As the results, RET estimated by G=0 was well agreed with RET calculated by measured G. Therefore, estimated net radiation, G=0 and albedo of green grass could be used for RET calculation by FAO PM.