• Title/Summary/Keyword: Reed-Solomon

Search Result 222, Processing Time 0.029 seconds

The Performance evaluation of the Reed-Solomon Product Code(RSPC) (Reed-Solomon Product Code의 에러 정정 능력 평가 방법)

  • Hwang, Sung-Hee;Lee, Yoon-Woo;Han, Sung-Hyu;Ryu, Sang-Hyun;Shin, Dong-Ho;Park, In-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2496-2498
    • /
    • 2001
  • 광 디스크 channel상에서 RSPC의 error correction capability를 확률적인 계산 방법으로 계산하는 데는 많은 어려움이 있다. 그 이유는 바로 광 디스크 channel이 burst error channel이기 때문인데, 이 burst error를 어떻게 다루는 가에 따라 그 error correction capability는 사뭇 달라진다. 이 논문에서는 Sony의 dust error distribution[1] 아래에서 4-state Morkov Chain[2]로 modeling하고 그 결과를 가지고 burst error를 channel의 특성과 ECC format의 특성에 맞게 제어할 수 있는 확률적인 계산방법을 소개하고 그것을 simulation하고자 한다.

  • PDF

A Design and Analysis of Authentication Scheme for Tolerating Packet Loss in the Multicast Environment (멀티캐스트 환경에서의 패킷 손실을 고려한 인증기법 설계 및 분석)

  • 임정미;박철훈;유선영;박창섭
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.6
    • /
    • pp.163-172
    • /
    • 2003
  • Proposed in this paper is an authentication mechanism for multimedia streaming data in the Intemet multicast environment. The multicast authentication mechanism is coupled with the packet-level forward error correction code which has been recently applied for a reliable multicast transport transmission. Associated with this, Reed-Solomon erasure code is chosen for tolerating packet loss so that each of the received packets can be authenticated independently of the lost packets.

Energy-aware Reed-Solomon Scheme for Improving Data Reliability in Solar-powered Wireless Sensor Networks (태양 에너지 기반 무선 센서 네트워크의 데이터 신뢰성 향상을 위한 에너지 적응형 Reed-Solomon 기법)

  • Jung, Jongwug;Kang, Minjae;Noh, Dong Kun;Cho, Sang Hoon
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.2
    • /
    • pp.122-127
    • /
    • 2017
  • The data link layer operates reliable internode communication in the OSI reference model. Generally, the forward error correction (FEC) method is used in the data link layer of the wireless sensor network (WSN) environment that has a high frequency of errors. However, the FEC method consumes a significant amount of energy due to its high error correction rate, which negatively affects the networks' lifespan. In contrast with battery-based technology, energy is regularly recharged in the solar-powered WSN to meet higher energy needs than required for basic operation of existing nodes. By efficiently utilizing this surplus energy, the proposed energy-aware FEC method can reduce the data loss rate with no decrement of the network lifetime. The method employs a trade-off relationship between the energy and data loss rate by adjusting the parity length in the FEC method to the energy state in each node. The performance of the proposed scheme was verified through a simulation.

Conference Supporting System Using Multicast in WLANs (무선 랜 환경에서 멀티캐스트를 이용한 회의 지원 시스템)

  • Jeong, Jae-Chul;Cha, Joon-Hyuk;Shin, Kun-Woo;Kim, Sun-Myeng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.515-518
    • /
    • 2011
  • Recently we all agree with the fact that conference is the most important communication method in industrial fields. With improvement of information technology, the conference using computer-aided system has been increased. Therefore, software, which can support the conference, is highly needed. In our work, we implemented the display sharing system in WLANs that sends the presenter's display to all audience in real-time manner. In order to share the display, we used multicast transmission which shows good performance in one to many communications. And also, to solve the data error and loss problem, which are weak points of multicast transmission, we used Reed-Solomon coding scheme.

  • PDF

Multipath Fading Channel Characterization and Performances of Forward Error Correction Codes in Very Shallow Water (극 천해 다중경로 페이딩 채널 특성과 전방오류 정정 코드의 성능)

  • Bae, Minja;Xue, Dandan;Park, Jihyun;Yoon, Jong Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2247-2255
    • /
    • 2015
  • In very shallow water acoustic communication channel, underwater acoustic (UWA) communication signal is observed as frequency selective fading signal due to time-varying multipath. This induces a time and frequency dependent inter-symbol-interference (ISI) and degrades the UWA system performance. There is no study about how the performances of the error correction codes are related to a multipath fading statistics in very shallow water. In this study, the characteristics of very shallow water multipath fading channel is analyzed and the performances of two different forward error correction (FEC) codes are compared. The convolution code (CC) and Reed-Solomon (RS) code are adopted. Sea experimental results show that RS code is better choice than CC in frequency selective channel with fading.

Transmission Methods Using RS Codes to Improve Spatial Relationship of Images in Reversible Data Hiding Systems (가역적 데이터 은닉 시스템에서 RS 부호를 사용한 이미지 공간상관 관계 향상을 위한 전송 기법)

  • Kim, Taesoo;Jang, Min-Ho;Kim, Sunghwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1477-1484
    • /
    • 2015
  • In this paper, a novel reversible data hiding by using Reed-Solomon (RS) code is proposed for efficient transmission in encryption image. To increase the recovery of data from encrypted image, RS codes are used to encode messages, and then the codewords can be embedded into encrypted image according to encryption key. After receiving encrypted image which embeds the codewords, the receiver firstly decryptes the encrypted image using the encryption key and get metric about codewords containing messages. According to recovery capability of RS codes, better estimation of message is done in data hiding system. Simulation results about two images and two RS codes show that the performances of the proposed schemes are better than ones of the reference scheme.

SEU Mitigation Strategy and Analysis on the Mass Memory of the STSAT-3 (과학기술위성 3호 대용량 메모리에서의 SEU 극복 및 확률 해석)

  • Kwak, Seong-Woo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.4
    • /
    • pp.35-41
    • /
    • 2008
  • When memory devices are exposed to a space environment. they suffer various effects such as SEU(Single Event Upset). For these reasons, memory systems for space applications are generally equipped with error detection and correction(EDAC) logics against SEUs. In this paper, the error detection and correction strategy in the Mass Memory Unit(MMU) of the STSAT-3 is discussed. The probability equation of un-recoverable SEUs in the mass memory system is derived when the whole memory is encoded and decoded by the RS(10,8) Reed-Solomon code. Also the probability value is analyzed for various occurrence rates of SEUs which the STSAT-3 possibly suffers. The analyzed results can be used to determine the period of scrubbing the whole memory, which is one of the important parameters in the design of the MMU.

Design of Degree-Computationless Modified Euclidean Algorithm using Polynomial Expression (다항식 표현을 이용한 DCME 알고리즘 설계)

  • Kang, Sung-Jin;Kim, Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.809-815
    • /
    • 2011
  • In this paper, we have proposed and implemented a novel architecture which can be used to effectively design the modified Euclidean (ME) algorithm for key equation solver (KES) block in high-speed Reed-Solomon (RS) decoder. With polynomial expressions of newly-defined state variables for controlling each processing element (PE), the proposed architecture has simple input/output signals and requires less hardware complexity because no degree computation circuits are needed. In addition, since each PE circuit is independent of the error correcting capability t of RS codes, it has the advantage of linearly increase of the hardware complexity of KES block as t increases. For comparisons, KES block for RS(255,239,8) decoder is implemented using Verilog HDL and synthesized with 0.13um CMOS cell library. From the results, we can see that the proposed architecture can be used for a high-speed RS decoder with less gate count.

Adaptive Error Recovery in cdma2000 1xEV-DO Broadcast and Multicast Networks (cdma2000 1xEV-DO를 위한 모바일 브로드캐스트/멀티캐스트 네트워크에서의 능동적인 에러 교정 방법에 관한 연구)

  • Kang Kyungtae;Park Hosang;Cho Yongwoo;Shin Heonshik
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.1
    • /
    • pp.91-102
    • /
    • 2006
  • We analyze the performance of MAC-layer Reed-Solomon error recovery in the cdma2000 1xEV-DO Broadcast and Multicast Services (BCMCSs) environment, with respect to the size of the ECB (Error Control Block) and the air-channel condition, and establish the relationship between ECB size, error recovery capacity and service latency. From this we propose an adaptive error recovery scheme which adjusts the size of the ECB to reflect the environment of the mobile nodes so as to meet the required service quality (target bit error-rate), while reducing the latency of real-time applications. Extensive simulation results show the effectiveness of our approach compared to the current static scheme. Proposed adaptive schemes achieves near optimal solution with respect to service latency while satisfying the required service quality.

MAC-Layer Error Control for Real-Time Broadcasting of MPEG-4 Scalable Video over 3G Networks (3G 네트워크에서 MPEG-4 스케일러블 비디오의 실시간 방송을 위한 실행시간 예측 기반 MAC계층 오류제어)

  • Kang, Kyungtae;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.3
    • /
    • pp.63-71
    • /
    • 2014
  • We analyze the execution time of Reed-Solomon coding, which is the MAC-layer forward error correction scheme used in CDMA2000 1xEV-DO broadcast services, under different air channel conditions. The results show that the time constraints of MPEG-4 cannot be guaranteed by Reed-Solomon decoding when the packet loss rate (PLR) is high, due to its long computation time on current hardware. To alleviate this problem, we propose three error control schemes. Our static scheme bypasses Reed-Solomon decoding at the mobile node to satisfy the MPEG-4 time constraint when the PLR exceeds a given boundary. Second, dynamic scheme corrects errors in a best-effort manner within the time constraint, instead of giving up altogether when the PLR is high; this achieves a further quality improvement. The third, video-aware dynamic scheme fixes errors in a similar way to the dynamic scheme, but in a priority-driven manner which makes the video appear smoother. Extensive simulation results show the effectiveness of our schemes compared to the original FEC scheme.