• Title/Summary/Keyword: Redundant Network Verification

Search Result 5, Processing Time 0.021 seconds

Verification of failover effects from distributed control system communication networks in digitalized nuclear power plants

  • Min, Moon-Gi;Lee, Jae-Ki;Lee, Kwang-Hyun;Lee, Dongil;Lim, Hee-Taek
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.989-995
    • /
    • 2017
  • Distributed Control System (DCS) communication networks, which use Fast Ethernet with redundant networks for the transmission of information, have been installed in digitalized nuclear power plants. Normally, failover tests are performed to verify the reliability of redundant networks during design and manufacturing phases; however, systematic integrity tests of DCS networks cannot be fully performed during these phases because all relevant equipment is not installed completely during these two phases. In additions, practical verification tests are insufficient, and there is a need to test the actual failover function of DCS redundant networks in the target environment. The purpose of this study is to verify that the failover functions works correctly in certain abnormal conditions during installation and commissioning phase and identify the influence of network failover on the entire DCS. To quantify the effects of network failover in the DCS, the packets (Protocol Data Units) must be collected and resource usage of the system has to be monitored and analyzed. This study introduces the use of a new methodology for verification of DCS network failover during the installation and commissioning phases. This study is expected to provide insight into verification methodology and the failover effects from DCS redundant networks. It also provides test results of network performance from DCS network failover in digitalized domestic nuclear power plants (NPPs).

An Overview of Content Poisoning in NDN: Attacks, Countermeasures, and Direction

  • Im, Hyeonseung;Kim, Dohyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2904-2918
    • /
    • 2020
  • With a huge demand for replicated content on the Internet, a new networking paradigm called information-centric networking (ICN) has been introduced for efficient content dissemination. In ICN, named content is distributed over the network cache and it is accessed by name instead of a location identifier. These aspects allow users to retrieve content from any of the nodes having replicas, and consequently 1) network resources are more efficiently utilized by avoiding redundant transmission and 2) more scalable services are provided by distributing server loads. However, in-network caching in ICN brings about a new type of security issues, called content poisoning attacks, where fabricated content is located in the network cache and interferes with the normal behavior of the system. In this paper, we look into the problems of content poisoning in ICN and discuss security architectures against them. In particular, we reconsider the state-of-the-art schemes from the perspective of feasibility, and propose a practical security architecture.

An Efficient Signature Batch Verification System for VANET (VANET를 위한 효율적인 서명 일괄 확인 시스템)

  • Lim, Ji-Hwan;Oh, Hee-Kuck;Kim, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.1
    • /
    • pp.17-31
    • /
    • 2010
  • In VANET (Vehicular Ad hoc NETwork), vehicles can efficiently verify a large number of signatures efficiently using batch verification techniques. However, batch verification performed independently in each vehicle raises many redundant verification cost. Although, an RSU (Road Side Unit) can perform the batch verification as a proxy to reduce this cost, it additionally requires an efficient method to identify invalid signatures when the batch verification fails. In this paper, we analyze several ways of constructing a distributed batch verification system, and propose an efficient distributed batch verification system in which participating vehicles perform batch verification in a distributive manner for a small size signature set. In our proposed system, each node can report the batch verification result or the identified invalid signatures list and the RSU who received these reports can identify the invalid signatures and efficiently exclude them.

A Protocol Analysis Platform for the WTB Redundancy in Train Communication Network(TCN) (철도차량 통신 네트워크(TCN)에서의 WTB 이중화에 대한 프로토콜 분석 플랫폼)

  • Choi, Seok-In;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • TCN(train communication network) standard was approved in 1999 by the IEC (IEC 61375-1) and IEEE (IEEE 1473-T) organizations to warrant a reliable train and equipment interoperability. TCN defines the set of communication vehicle buses and train buses. The MVB(multifunction vehicle bus) defines the data communication interface of equipment located in a vehicle and the WTB(wire train bus) defines the data communication interface between vehicles. The WTB and each MVB will be connected over a node acting as gateway. Also, to support applications demanding a high reliability, the standard defines a redundancy scheme in which the bus may be double-line and redundant-node implemented. In this paper we have presented protocol analysis platform for the WTB redundancy which is part of TCN system, to verify communication state of high-speed trains. As a confirmation of its validity, the technology described in this paper has been successfully applied to state monitoring and protocol verification of redundancy WTB based on TCN.

A Study on the Obstacle Avoidance of a Robot Manipulator by Using the Neural Optimization Network (신경최적화 회로를 이용한 로봇의 장애물 회피에 관한 연구)

  • 조용재;정낙영;한창수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.267-276
    • /
    • 1993
  • This paper discusses the neural network application in the study on the obstacle avoidance of robot manipulator during the trajectory planning. The collision problem of two robot manipulators which are simultaneously moving in the same workspace is investigated. Instead of the traditional modeling method, this paper processing based on the calculation of joint angle in the cartesian coordinate with constrained condition shows the possibility of real time control. The problem of the falling into the local minima is cleared by the adaptive weight factor control using the temperature adding method. Computer simulations are shown for the verification.