• Title/Summary/Keyword: Redundant IMU

Search Result 6, Processing Time 0.021 seconds

Calibration of a Redundant IMU with Low-grade Inertial Sensors (저급 관성센서로 구성된 중첩 IMU의 오차 보정)

  • Cho, Seong-Yun;Park, Chan-Gook;Lee, Dal-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.53-59
    • /
    • 2004
  • A calibration technique for a redundant IMU with low-grade inertial sensors is proposed. In order to calibrate the redundant IMU that can detect and isolate a faulty sensor, the fundamental coordinate frames in the IMU are defined and the IMU error is modeled based on the frames. Equations to estimate the error coefficients of the redundant IMU are formulated, and a test sequence using the 2-axis rate table is also presented. Finally, a redundant IMU with cone configuration is implemented using the low-grade inertial sensors and the performance of the proposed technique is verified by some experiments.

A Calibration Technique for a Redundant IMU Containing Low-Grade Inertial Sensors

  • Cho, Seong-Yun;Park, Chan-Gook
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.418-426
    • /
    • 2005
  • A calibration technique for a redundant inertial measurement unit (IMU) containing low-grade inertial sensors is proposed. In order to calibrate a redundant IMU that can detect and isolate faulty sensors, the fundamental coordinate frames in the IMU are defined and the IMU error is modeled based on the frames. Equations to estimate the error coefficients of the redundant IMU are formulated, and a test sequence using a 2-axis turntable is also presented. Finally, a redundant IMU with cone configuration is implemented using low-grade inertial sensors, and the performance of the proposed technique is verified experimentally.

  • PDF

A Fault Detection Method of Redundant IMU Using Modified Principal Component Analysis

  • Lee, Won-Hee;Park, Chan-Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.398-404
    • /
    • 2012
  • A fault detection process is necessary for high integrity systems like satellites, missiles and aircrafts. Especially, the satellite has to be expected to detect faults autonomously because it cannot be fixed by an expert in the space. Faults can cause critical errors to the entire system and the satellite does not have sufficient computation power to operate a large scale fault management system. Thus, a fault detection method, which has less computational burden, is required. In this paper, we proposed a modified PCA (Principal Component Analysis) as a powerful fault detection method of redundant IMU (Inertial Measurement Unit). The proposed method combines PCA with the parity space approach and it is much more efficient than the others. The proposed fault detection algorithm, modified PCA, is shown to outperform fault detection through a simulation example.

Optimal In-Plane Configuration of 3-axis MEMS IMUs Considering Fault Detection and Isolation Performance and Lever Arm Effect (레버암 효과와 고장 감지 및 배제 성능을 고려한 여분의 3축 MEMS IMU의 평면 배치 기법)

  • Kim, Eung Ju;Kim, Yong Hun;Choi, Min Jun;Song, Jin Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1648-1656
    • /
    • 2018
  • The configuration of redundant inertial sensors are very important when considering navigation performance and fault detection and isolation (FDI) performance. By constructing a redundant sensor system using multiple inertial sensors, it is possible to improve the navigation performance and fault detection and isolation performance, which are highly related to the sensor configuration and allocation. In order to deploy multiple MEMS inertial measurement units effectively, a configuration and allocation methods considering navigation performance, fault detection and isolation performance, and lever arm effect in one plane are presented, and the performance is analyzed through simulation in this research. From the results, it is confirmed that the proposed configuration and allocation method can improve navigation, FDI, and lever arm effect rejection performances more effectively by more than 70%.

Optimal IMU Configurations for a SDINS

  • Kim, Kwang-Hoon;Lee, Jang-Gyu;Shim, Duk-Sun;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.116.5-116
    • /
    • 2001
  • When inertial navigation system(INS) employ more sensors that mutually orthogonal sets to three, the redundant sensor system can have improved reliability and accuracy. For the redundant system the placement of redundant sensors is related to the system performance and also the number and proper orientation of sensors are important. We consider INS sensor configurations using two IMUs comprised mutually orthogonal sets of three. We suggest several configurations using two IMUs and analyze the system performance and the FDI(fault detection and isolation) properties from suggested configurations.

  • PDF

Improvement of the Double Fault Detection Performance of Extended Parity Space Approach (확장 패리티 공간 기법의 이중고장 검출성능 향상 연구)

  • Lee, Won-Hee;Park, Chan-Gook;Lee, Dal-Ho;Kim, Kwang-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1002-1008
    • /
    • 2009
  • We consider a double faults detection and isolation problem using modified extended parity space approach for inertial measurement unit which use redundant inertial sensors. A redundant IMU which has a hardware redundant is composed of the cone shape because it is good for fault detection and isolation. We analyze the type of double faults and the reason why fault isolation performance is low. We propose modified extended parity space approach method using EPSA and the difference of sensor data.