• Title/Summary/Keyword: Reduction scenarios

Search Result 368, Processing Time 0.024 seconds

A Study on the Economic Analysis of Low-Temperature SCR Technology for NOx Reduction by Scenarios (배연탈질을 위한 저온 SCR 기술 도입에 따른 시나리오별 경제성 분석)

  • Hong, Sungjun;Lee, Youah;Jeong, Soonkwan
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.10-22
    • /
    • 2020
  • As the national demand for solving the fine dust problem has increased, the government has announced intensive measures to deal with fine dust. So recently, selective catalytic reduction(SCR) has attracted attention as a technology for removing nitrogen oxides from precursors of fine dust. In this study, the government's policies related to fine dust and the current status of market and R&D were investigated, and economic analysis by scenarios was conducted by dividing cases where SCR technology was applied to industries. The results of economic analysis for each scenario were calculated using NPV, and companies with no denitrification facilities(Case 1) introduced general SCR technologies(Scenario 1-1) and low-temperature SCR technologies(Scenario 1-2). In addition, companies that have already installed denitrification facilities(Case 2) analyzed the two categories, using the general SCR technology as it is(Scenario 2-1) and replacing it with low-temperature SCR technology(Scenario 2-2). Comparative analysis was performed based on the results of each NPV.

Simulations of Reduction Effects on Runoff and Sediment for VFS Applications by Considering Uplands Characteristics in Iksan (익산 밭경지 특성을 고려한 초생대 유출 및 유사 저감효과 모의)

  • Lee, Seul Gi;Jang, Jeong Ryeol;Choi, Kyung Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.89-99
    • /
    • 2014
  • The goal of this study was to evaluate sediment reduction effects of VFS (vegetative filter strip) applied for Iksan area in Saemangeum watershed. This study simulated runoff and sediment load from different types of uplands using VFSMOD-W. The general upland characteristics of the study area was investigated to build reasonable scenarios of the simulation. The simulation scenarios were designed by various areas, shapes, and slopes of uplands. Grass mixture was selected as VFS vegetation and the size of VFS was fixed as 10 % of uplands area. Additionally 50mm, 100mm, 150mm of daily rainfall were applied for the runoff and sediment simulation. As results, the calculated runoff and sediment loads were obtained $20.7{\sim}1,030.6m^3$ and 568.4~675,731.4 kg for the range of 0.1~1.0 ha of uplands with 7 % and 15 % slopes. The reduction effects on runoff and sediment were obtained 5~10 % and 21.0~47.7 % respectively from VFS applications. The VFSMOD-W simulations showed that runoff tended to increase as upland area and amount of rainfall increased while sediment increased when slope, length and area of uplands and amount of rainfall increased. These results indicated that rainfall amount and upland size are the critical factors for the generation of runoff and sediment load. In order to support this conclusion, further studies such as, long term monitoring, field experiments, and to calibrate and evaluate the model are necessary.

Analysis of GHG Reduction Potential on Road Transportation Sector using the LEAP Model - Low Carbon Car Collaboration Fund, Fuel Efficiency, Improving Driving Behavior - (LEAP 모형을 이용한 도로교통부문의 온실가스 감축잠재량 분석 - 저탄소차협력금제도, 연비강화, 운전행태개선을 중심으로 -)

  • Kim, Min wook;Yoon, Young Joong;Han, Jun;Lee, Hwa Soo;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • This study the efficiency of greenhouse gas reduction of 'low carbon car collaboration fund' and its alternative 'control of average fuel efficiency and greenhouse gas', and 'improving driving behavior' were analyzed by using LEAP, long term energy analysis model. Total 4 scenarios were set, baseline scenario, without energy-saving activity, 'low carbon car collaboration fund' scenario, 'fuel efficiency improving scenario', and 'improving driving behavior' scenario. The contents of analysis were forecast of energy demand by scenario and application as well as reduction of greenhouse gas emission volume, and the period taken for analysis was every 1 year during 2015~2030. Baseline scenario, greenhouse gas emission volume in 2015 would be 7,935,697 M/T and 13,081,986 M/T in 2030, increased 64.8%. The analysis result was average annual increase rate of 3.4%. The expected average annual increase rate of other scenarios was, 'low carbon car collaboration fund' scenario 1.7%, 'fuel efficiency improving' scenario 3.0%. and 'improving driving behavior' scenario 3.4%. and these were each 1.7%, 0.3%. 0.3% reduce from baseline scenario. The largest reduction was 'low carbon car collaboration fund' scenario, and there after were 'fuel efficiency improving scenario', and 'improving driving behavior' scenario.

Effects of porous pavement on runoff reduction in Boguang subcatchment (투수성 포장도로 도입을 통한 보광배수유역 유출량 저감효과 검토)

  • Jung, Jiyun;Lee, Gunyoung;Ryu, Jaena;Ohe, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.251-259
    • /
    • 2013
  • Among various Green Infrastructure measures for urban stormwater management, effects of porous pavement were quantitatively examined in terms of hydrological cycle. Different scenarios for porous pavement were introduced on a SWMM model and the effects were compared and analysed using discharge hydrographs. Two types of pavements having different runoff coefficients (0.05 & 0.5) were introduced to cover different ratio of entire road areas (100 %, 77.5 % and 40.4 %) and these made up in total 6 different scenarios. Total runoff volume was reduced and peak flow was significantly decreased by applying the porous pavement. The highest reduction for total runoff was shown from S-6(covering area: 100 %, runoff coefficient: 0.05) as 19 % followed by S-5(covering area: 77.5 %, runoff coefficient: 0.05, 16 %), while that of S-2(covering area: 40.4 %, runoff coefficient: 0.05) and S-1(covering area: 40.4 %, runoff coefficient: 0.5) were the lowest with 8 % and 5 %. This proved that the application of porous pavement would improve urban hydrological cycle.

Repair Scheme of FRP Column Jacketing System for Seismically-vulnerable RC Buildings under Successive Earthquakes (연속지진에 대한 지진 취약 철근콘크리트 건축물의 FRP 재킷 보수 전략 연구)

  • Kim, Subin;Kim, Haewon;Park, Jaeeun;Shin, Jiuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.79-90
    • /
    • 2023
  • Existing reinforced concrete (RC) frame buildings have seismic vulnerabilities because of seismically deficient details. In particular, since cumulative damage caused by successive earthquakes causes serious damage, repair/retrofit rehabilitation studies for successive earthquakes are needed. This study investigates the repair effect of fiber-reinforced polymer jacketing system for the seismically-vulnerable building structures under successive earthquakes. The repair modeling method developed and validated from the previous study was implemented to the building models. Additionally, the main parameters of the FRP jacketing system were selected as the number of FRP layers associated with the confinement effects and the installation location. To define the repair effects of the FRP jacketing system with the main parameters, this study conducted nonlinear time-history analyses for the building structural models with the various repairing scenarios. Based on this investigation, the repair effects of the damaged building structures were significantly affected by the damage levels induced from the mainshocks regardless of the retrofit scenarios.

Analysis of the Effects on Soil Erosion and Suspended Sediment Reduction by Alpine Unauthorized and Illegal Agricultural Fields Restoration Scenarios (고랭지 임의·불법 경작지 복구 시나리오에 따른 토양유실 및 부유사량 저감 효과 분석)

  • Lee, Seoro;Lee, Gwanjae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.53-62
    • /
    • 2024
  • This study assessed the efficiency of reducing soil erosion and suspended sediment through the restoration of alpine unauthorized and illegally cultivated fields, using the SWAT (Soil and Water Assessment Tool) model in the Mandae District. The results showed that in Scenario 5, which involved restoring unauthorized and illegal fields within forests, along rivers (banks), and in ditch areas were restored to their original land categories, achieved the highest efficiency in reducing average annual soil erosion and suspended sediment, with reductions of 8.1% and 4.5%, respectively. In particular, it was confirmed that the restoration of unauthorized and illegal fields within forested areas has a significant impact. This demonstrated that the restoration of unauthorized and illegal agricultural fields can substantially reduce the soil erosion and suspended sediment attributable to non-point source pollution. Our findings highlight the importance of managing these unauthorized and illegal agricultural activities in developing sustainable strategies within non-point source pollution management areas. This study is expected to provide important basic data to effectively establish water quality improvement strategies in the region of non-point source pollution management.

A Study on the Potential of CO2 Emissions Reduction Recycled Aggregate according to Transportation Plan of Waste Concrete - Focused on Daegu City and Kyungpook Area - (폐콘크리트의 수송계획에 따른 순환골재의 CO2 배출량 저감 가능성에 관한 연구 - 대구·경북지역을 중심으로 -)

  • Kim, Tae Hyun;Cha, Gi Wook;Hong, Won Hwa
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.131-138
    • /
    • 2014
  • The recent interests in securing alternative resource have increased due to environmental issues and exhaustion of natural resources. The government notices production of recycled aggregate using waste concrete as the substitute of the natural aggregate. However, It's important to reduce environmental burden being inevitably made in the process producing recycled aggregate. In this study, the scenarios of transportation distance were set in the transportation phase of production of recycled aggregate. In addition, The possibility of emissions and reduction of carbon dioxide were studied depending on the scenarios. For this study, data about a amount of waste concrete, transportation distance, kind of vehicle, the number of required vehicle, fuel efficiency of vehicle and etc were gathered from 15 companies of intermediate treatment and 60 constructions sites located in Daegu city and Kyungpook area. Based on those data, fuel consumptions and $CO_2$ emissions according to the transportation scheme of waste concrete were calculated. As a result of the study, the emission of carbon dioxide was possible to be reduced by 27.8~75.4% depending on the scenarios of transportation distance.

A Study on BASINS/WinHSPF for Evaluation of Non-point Source Reduction Efficiency in the Upstream of Nam-Han River Watershed (BASINS/WinHSPF를 이용한 남한강 상류 유역의 비점오염원 저감효율평가)

  • Yoon, Chun-Gyeong;Shin, Ah-Hyun;Jung, Kwang-Wook;Jang, Jae-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.951-960
    • /
    • 2007
  • Window interface to Hydrological Simulation Program-FORTRAN (WinHSPF) developed by the United States Environmental Protection Agency (EPA) was applied to the upstream of Nam-Han river watershed to examine its applicability for loading estimates in watershed scale and to evaluate non-point source control scenarios using BMPRAC in WinHSPF. The WinHSPF model was calibrated and verified for water flow using Ministry of Construction and Transportation (MOCT, 3 stations, 2003~2005) and water qualities using Ministry of Environment (MOE, 5 station, 2000~2006). Water flow and water quality simulation results were also satisfactory over the total simulation period. But outliers were occurred in the time series data of TN and TP at some regions and periods. Therefore, it required more profit calibration process for more various parameters. As a result, all the study was performed within the expectation considering the complexity of the watershed, pollutant sources and land uses intermixed in the watershed. The estimated pollutant load for annual average about $BOD_5$, T-N and T-P respectively. Nonpoint source loading had a great portion of total pollutant loading, about 86.5~95.2%. In WinHSPF, BMPRAC was applied to evaluate non-point source control scenarios (constructed wetland, wet detention ponds and infiltration basins). All the scenarios showed efficiency of non-point source removal. Overall, the HSPF model is adequate for simulating watersheds characteristics, and its application is recommended for watershed management and evaluation of best management practices.

Modification of Sediment Trapping Efficiency Equation of VFS in SWAT Considering the Characteristics of the Agricultural Land in Korea (국내 경작지 특성을 고려한 SWAT 모형의 식생여과대 유사저감 효율 산정식 개선)

  • Han, Jeong Ho;Park, Younshik;Kum, Donghyuk;Jung, Younghun;Jung, Gyo Cheol;Kim, Ki-Sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.482-490
    • /
    • 2015
  • In this study, considering the factors that affects sediment trapping efficiency of Vegetative Filter Strips (VFS), the scenarios were designed to develop a regression equation to estimate sediment trapping efficiency of VFS for agricultural fields in South-Korea. For this, general conditions of agricultural fields in South-Korea were investigated. Then, based on these results, total 53,460 scenarios were set and simulated by Vegetative Filter Strip MODel (VFSMOD-w). Two variables were determined from the results of 53,460 scenarios. These two variables were applied to CurveExpert for development of a equation, which can estimate sediment trapping efficiency of VFS. The equation developed in this study can be used in SWAT model for estimation of sediment reduction efficiency of VFS to upland field in Korea. Moreover, it is expected that VFS will be effectively applied to agricultural fields in South-Korea.

Evaluation of Corn Production Based on Different Climate Scenarios

  • Twumasi, George Blay;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.518-518
    • /
    • 2016
  • Agriculture is the lifeblood of the economy in Ghana, employs about 42% of the population work force and accounts for 30% of the Gross Domestic Product (GDP). Corn (maize) is the major cereal crop grown as staple food under rain fed conditions, covers over 92% of the total agricultural area, and contributes 54% of the caloric intake. Issues of hunger and food insecurity for the entire nation are associated with corn scarcity and low production. The climate changes are expected to affect corn production in Ghana. This study evaluated variations of corn yields based on different climate conditions of rain-fed area in the Dangbe East District of Ghana. AquaCrop model has been used to simulate corn growing cycles in study area for this purpose. The main goal for this study was to predict yield of corn using selected climatic parameters from 1992 to 2013 using different climate scenarios. The Model was calibrated and validated using observed field data, and the simulated grain yields matched well with observed values for the season under production giving an R squared (R2)of 0.93 and Nash-Sutcliff Error(NSE) of 0.21. Study results showed that rainfall reduction in the range of -5% to -20% would reduce the yield from 1.315ton/ha to 0.421ton/ha (-21. 3%) whereas increasing temperature from 1% to 7% would result in the maximum yield reduction of -20.6% (1.315 to 1.09 ton/ha.). On the other hand, increasing rainfall from 5-20% resulted in yield increment of 68% (1.315-2.209 ton/ha) and decreasing temperature produce 7% increase in yield ( 1.315 to 1.401ton/ha). These results provide useful information to adopt strategies by the Government of Ghana and farmers for improving national food security under climate change.

  • PDF