• Title/Summary/Keyword: Reduction of story-height

Search Result 24, Processing Time 0.036 seconds

Demand response modification factor for the investigation of inelastic response of base isolated structures

  • Cheraghi, Rashid Eddin;Izadifarda, Ramezan Ali
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.23-48
    • /
    • 2013
  • In this study, the effect of flexibility of superstructures and nonlinear characteristics of LRB (Lead Rubber Bearing) isolator on inelastic response of base isolated structures is investigated. To demonstrate the intensity of damage in superstructures, demand response modification factor without the consideration of damping reduction factor, demand RI, is used and the N2 method is applied to compute this factor. To evaluate the influence of superstructure flexibility on inelastic response of base isolated structures, different steel intermediate moment resisting frames with different heights have been investigated. In lead rubber bearing, the rubber provides flexibility and the lead is the source of damping; variations of aforementioned characteristics are also investigated on inelastic response of superstructures. It is observed that an increase in height of superstructure leads to higher value of demand RI till 4-story frame but afterward this factor remains constant; in other words, an increase in height until 4-story frame causes more damage in the superstructure but after that superstructure's damage is equal to the 4-story frame's. The results demonstrate that the low value of second stiffness (rubber stiffness in LRBs) tends to show a significant decrease in demand RI. Increase in value of characteristic strength (yield strength of the lead in LRBs) leads to decrease in the demand RI.

Analytical Studies on Seismic Performance of Multi-Story Coupled Piping System in a Low-Rise Building

  • Jung, WooYoung;Ju, BuSeog
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.181-186
    • /
    • 2013
  • The construction costs for nonstructural systems such as mechanical/electrical equipment, ceiling system, and piping system occupy a significant proportion of the total cost. These nonstructural systems can also cause considerable economic losses and loss of life during and after an earthquake. Therefore, reduction of seismic risk of nonstructural components has been emerging as a key aspect of research in recent year. The primary objective of this study was to evaluate the seismic performance of a single-story and multi-story piping system installed in low-rise building and to identify the seismic vulnerability of the current piping systems. The seismic performance evaluation of the piping systems was conducted with 5 different earthquakes to account for the ground motion uncertainty and the preliminary results demonstrated that the maximum displacements of each floor in the multi-story piping system increased linearly with increasing floor level in the building system. This study revealed that the current design piping systems are significantly sensitive to the effect of floor height, which stress the necessity to improve the seismic performance of the current piping systems by, for example, strengthening with seismic sway bracing using transverse/longitudinal bracing cables or hangers.

Seismic response control of a building complex utilizing passive friction damper: Analytical study

  • Ng, C.L.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.85-105
    • /
    • 2006
  • Control of structural response due to seismic excitation in a manner of coupling adjacent buildings has been actively developed, and most attention focused on those buildings of similar height. However, with the rapid development of some modern cities, multi-story buildings constructed with an auxiliary low-rise podium structure to provide extra functions to the complex become a growing construction scheme. Being inspired by the positively examined coupling control approach for buildings with similar height, this paper aims to provide a comprehensive analytical study on control effectiveness of using friction dampers to link the two buildings with significant height difference to supplement the recent experimental investigation carried out by the writers. The analytical model of a coupled building system is first developed with passive friction dampers being modeled as Coulomb friction. To highlight potential advantage of coupling the main building and podium structure with control devices that provide a lower degree of coupling, the inherent demerit of rigid-coupled configuration is then evaluated. Extensive parametric studies are finally performed. The concerned parameters influencing the design of optimal friction force and control efficiency include variety of earthquake excitation and differences in floor mass, story number as well as number of dampers installed between the two buildings. In general, the feasibility of interaction control approach applied to the complex structure for vibration reduction due to seismic excitation is supported by positive results.

Evaluation of Flexural Behavior of Prestressed Composite Beams with Corrugated Webs (파형웨브 프리스트레스트 합성보의 휨거동 평가)

  • Oh, Jae-Yuel;Lee, Deuck-Hang;Kim, Kang-Su;Kang, Hyun;Lee, Sofia;Bang, Yong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.39-40
    • /
    • 2010
  • The demands for longer span and reduction of story height have greatly increased as building structures become much larger and higher in recent years. Although the development of flexural members for reducing story height or making long span has been studied by many researchers and engineers, there is still a lack of efficient systems that meet these two demands simultaneously. This study aimed at developing a new composite beam system suitable for long span and reduction of story height, and proposed a prestressed composite beam with corrugated web. It has great resistance against non-symmetric construction load due to its strong out-of-plane shear strength with relatively small member height as well as good constructability and economic efficiency by removing/minimizing form work. The corrugated webs also make accordion effect introducing larger effective prestressing force to top and bottom flanges, which causes larger upward camber reducing the member deflection. Five full-scale specimens with key test parameters, which are web sectional shapes and number of drape points, were tested to understand their flexural behavior and to verify the performance of the proposed method. The experimental test results showed that the proposed prestressed composite beam had greater flexural strength and stiffness than the ordinary non-prestressed composite beam.

  • PDF

Seismic behavior investigation of the steel multi-story moment frames with steel plate shear walls

  • Mansouri, Iman;Arabzadeh, Ali;Farzampour, Alireza;Hu, Jong Wan
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.91-98
    • /
    • 2020
  • Steel plate shear walls are recently used as efficient seismic lateral resisting systems. These lateral resistant structures are implemented to provide more strength, stiffness and ductility in limited space areas. In this study, the seismic behavior of the multi-story steel frames with steel plate shear walls are investigated for buildings with 4, 8, 12 and 16 stories using verified computational modeling platforms. Different number of steel moment bays with distinctive lengths are investigated to effectively determine the deflection amplification factor for low-rise and high-rise structures. Results showed that the dissipated energy in moment frames with steel plates are significantly related to the inside panel. It is shown that more than 50% of the dissipated energy under various ground motions is dissipated by the panel itself, and increasing the steel plate length leads to higher energy dissipation capability. The deflection amplification factor is studied in details for various verified parametric cases, and it is concluded that for a typical multi-story moment frame with steel plate shear walls, the amplification factor is 4.93 which is less than the recommended conservative values in the design codes. It is shown that the deflection amplification factor decreases if the height of the building increases, for which the frames with more than six stories would have less recommended deflection amplification factor. In addition, increasing the number of bays or decreasing the steel plate shear wall length leads to a reduction of the deflection amplification factor.

An Experimental Evaluation on Flexural Performance of Light-Weight Void Composite Floor using GFRP (GFRP를 이용한 경량합성바닥의 휨성능에 대한 실험적 평가)

  • Ryu, Jae-Ho;Park, Se-Ho;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.125-135
    • /
    • 2011
  • To obtain a lower story height with a long span and better fire resistance, a new composite floor system using GFRP (glass-fiber-reinforced plastics) was proposed. This floor system consists of asymmetric steel with a web opening, a hollow core ball, concrete, and GFRP. To evaluate the flexural performance of the new composite floor system, an experiment was conducted. The test parameters were the presence of GFRP, the void ratio in relation to the hollow core balls, and the web opening. The test results showed that the resistance and stiffness of the specimen with GFRP were 10% higher than those of the reference specimen, and that fully composite action was accomplished up to the yielding point. After the attainment of the yield strength, the ductility of the specimen was reduced due to the stress concentration around the web openings. The slip between the concrete and steel beam, however, was small. Thus, in the design of the proposed new floor systems, it is desirable that the calculated resistance be reduced by 15%, for safety.

Improvement of Shear Performance for High Ductile Fiber-Reinforced Mortar Slab-Column Connection in Flat Plate Structural System (고인성 복합섬유 모르타르를 이용한 플랫 플레이트 구조 슬래브-기둥 접합부의 전단성능 개선)

  • Ha Gee Joo;Kim Yun Yong;Shin Jong Hak;Yang Seung Hyeok;Hong Kun Ho;Kim Joung Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.145-148
    • /
    • 2005
  • Recently the construction of high-rise reinforced concrete building is progressively increased as the social demands. It is significantly important factors such as economy, the safety of structure, and the flexibility of internal space. Therefore new structural system is also required to be attained the reduction of story height, the flexibility and efficient use of space. The most suitable structural system is with the economy and flexibility, flat plate slab system in high-rise reinforced concrete building. In this research, it was focused in the improvement of shear performance in the flat plate system using high ductile fiber reinforced mortar. It was evaluated the shear performance in the critical region of slab-column connection. The flat plate system, designed by the high performance and safety, was developed as a new technique in the application of high-rise R/C building.

  • PDF

A Study on the Characteristics of the Floor Impact Noise and Vibration According to Structure Types of Apartment House (공동주택 구조 유형별 바닥진동 및 바닥충격음 특성)

  • Lee, Ku-Dong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.35-39
    • /
    • 2009
  • Recently, the flat-plate structure is widely used because it has many advantages such as reduction of story height, long span etc than the RC rahmen structure. Furthermore, application of the flat-plate is on the increase because of flexible plan unlike wall structure. Long span have been at a disadvantage for vibration serviceability evaluation, however studies about vertical direction vibration of flat-plate structure has not been carried out. This study analysis the characteristics according to slab structure to make an experiment on vibration and floor impact noise for the flat-plate structure in construction performance laboratory in Kolon E&C R&D center, the flat-plate structure applied to the post-tension method, and the wall structure in apartment houses.

  • PDF

An Experimental Study on Mechanical Behavior of High Strength Concrete Beam with Circular Opening (고강도 철근콘크리트 유공보의 역학적 거동에 관한 실험적 연구)

  • 구범모;박강근;윤승현;김용태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.609-614
    • /
    • 2000
  • This paper is an experimental study of the normal strength concrete beam and high strength concrete beam for the analysis of bending and shear behavior. In building structure, the story height can be minimized by providing openings in beams which serves for the utility equipments passing through. The dead space in false ceiling increase construction cost, the good ceiling system such as beam with opening give to economical merits because of a substantial reduction in materials and construction cost. For the analysis on the mechanical behavior of the reinforced high strength and normal strength concrete beams with circular opening in the web, the stress concentration of the circular opening, crack pattern and reinforcing methods were studied. Twenty test pieces with different reinforcing methods and difference concrete strength were tested and their resisting forces and load deflection curves were defined in this study.

  • PDF

Strength Measurements of Slim Floor Composite Beams used Perforated Square Shape Steel Pipe (천공된 각형강관을 이용한 슬림플로어 합성보의 내력실험)

  • Kim, Dong-Yeon;Rhim, Hong-Chul;Park, Sung-Woon;Kim, Do-Kyun;Lyum, Seung-Il;Park, Dae-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.189-190
    • /
    • 2015
  • Slim Floor construction method has to increase the available surface area thereby reducing the depth beams and slab. In addition, In this study compostie beam assembly of plates, square-shape steel pipe and deck plate. So workabiltiy is superior to the upper concrete possible without formwork. In the present study is strength test in progress in development slim floor composite beam used plate and perforated square shape steel pipe and obtained anlysis and conclustion of the experimental results.

  • PDF