• Title/Summary/Keyword: Reduction of outflow

Search Result 84, Processing Time 0.023 seconds

A Change of Peak Outflows due to Decision of Flow Path in Storm Sewer Network (우수관망 노선 결정에 따른 첨두유출량 변화 분석)

  • Lee, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5151-5156
    • /
    • 2010
  • In the previous researches for storm sewer design, the flow paths in overall network were determined to minimize the construction cost and then, it was not considered the superposition effect of runoff hydrographs in the sewer pipes. However, in this research, the flow paths are determined considering the superposition effect to reduce the inundation risk by controlling and distributing the flows in the sewer pipes. This is accomplished by distributing the inflows that enter into each junction by changing the flow path in which pipes are connected between junctions. In this paper, the superposition effect and peak outflows at outlet were analyzed considering the changes of the flow paths in the sewer network. Then, the flow paths are determined using genetic algorithm and the objective function is to minimize the peak outflow at outlet. As the applied result for the sample sewer network, the difference between maximum and minimum peak outflows which are caused by the change of flow path was about 5.6% for the design rainfall event of 10 years frequency with 30 min. duration. Also, the typhoon 'Rusa' which occurred at 2002 was applied to verify the reduction of inundation risk for the excessive rainfall, and then, the amount of overflows was reduced to about 31%.

A Study on the Lining Stability of Old Tunnel Using Groundwater Flow Modelling and Coupled Stress-Pore Water Pressure Analysis (지하수 유동과 응력-간극수압 연계 해석을 통한 노후터널의 라이닝 안정성 분석)

  • Kim, Bum-Joo;Jung, Jae-Hoon;Jang, Yeon-Soo;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.101-113
    • /
    • 2012
  • The degradation of a tunnel drainage system leads to increases in pore water pressure around the tunnel and the lining stress, which results in affecting the tunnel stability. In the present study of the Namsan 3th tunnel, more than 30 year old tunnel, the effects of the drainage performance reduction due to drain hole clogging on the tunnel lining stability were investigated by examining pore water pressure distribution around the tunnel and the lining stresses through numerical analysis. Groundwater flow modeling on the Mt. Namsan region was done first and 3D seepage and coupled stress-pore water pressure finite element analysis were performed on the tunnel using the results of the groundwater flow modeling. The pore water pressure distribution and the tunnel lining stresses could be predicted using a drain hole outflow data measured in the tunnel site. This analysis method may be used to evaluate the current stability of old tunnels for which in most cases field investigations and related information are not readily available.

Evaluation of SWAT Applicability to Simulation of Sediment Behaviois at the Imha-Dam Watershed (임하댐 유역의 유사 거동 모의를 위한 SWAT 모델의 적용성 평가)

  • Park, Younshik;Kim, Jonggun;Park, Joonho;Jeon, Ji-Hong;Choi, Dong Hyuk;Kim, Taedong;Choi, Joongdae;Ahn, Jaehun;Kim, Ki-sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.467-473
    • /
    • 2007
  • Although the dominant land use at the Imha-dam watershed is forest areas, soil erosion has been increasing because of intensive agricultural activities performed at the fields located along the stream for easy-access to water supply and relatively favorable topography. In addition, steep topography at the Imha-dam watershed is also contributing increased soil erosion and sediment loads. At the Imha-dam watershed, outflow has increased sharply by the typhoons Rusa and Maemi in 2002, 2003 respectively. In this study, the Soil and Water Assessment Tool (SWAT) model was evaluated for simulation of flow and sediment behaviors with long-term temporal and spatial conditions. The precipitation data from eight precipitation observatories, located at Ilwol, Subi and etc., were used. There was no significant difference in monthly rainfall for 8 locations. However, there was slight differences in rainfall amounts and patterns in 2003 and 2004. The topographical map at 1:5000 scale from the National Geographic Information Institute was used to define watershed boundaries, the detailed soil map at 1:25,000 scale from the National Institute of Highland Agriculture and the land cover data from the Korea Institute of Water and Environment were used to simulate the hydrologic response and soil erosion and sediment behaviors. To evaluate hydrologic component of the SWAT model, calibration was performed for the period from Jan. 2002 to Dec. 2003, and validation for Jan. 2004 to Apr. 2005. The $R^2$ value and El value were 0.93 and 0.90 respectively for calibration period, and the $R^2$ value and El value for validation were 0.73 and 0.68 respectively. The $R^2$ value and El value of sediment yield data with the calibrated parameters was 0.89 and 0.84 respectively. The comparisons with the measured data showed that the SWAT model is applicable to simulate hydrology and sediment behaviors at Imha dam watershed. With proper representation of the Best Management Practices (BM Ps) in the SWAT model, the SWAT can be used for pre-evaluation of the cost-effective and sustainable soil erosion BMPs to solve sediment issues at the Imha-dam watershed. In Korea, the Universal Soil Loss Equation (USLE) has been used to estimate the soil loss for over 30 years. However, there are limitations in the field scale mdel, USLE when applied for watershed. Also, the soil loss changes temporarily and spatially, for example, the Imha-dam watershed. Thus, the SW AT model, capable of simulating hydrologic and soil erosion/sediment behaviors temporarily and spatially at watershed scale, should be used to solve the muddy water issues at the Imha-dam watershed to establish more effective muddy water reduction countermeasure.

Microbial Influence on Soil Properties and Pollutant Reduction in a Horizontal Subsurface Flow Constructed Wetland Treating Urban Runoff (도시 강우유출수 처리 인공습지의 토양특성 및 오염물질 저감에 따른 미생물 영향 평가)

  • Chiny. C. Vispo;Miguel Enrico L. Robles;Yugyeong Oh;Haque Md Tashdedul;Lee Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.168-181
    • /
    • 2024
  • Constructed wetlands (CWs) deliver a range of ecosystem services, including the removal of contaminants, sequestration and storage of carbon, and enhancement of biodiversity. These services are facilitated through hydrological and ecological processes such as infiltration, adsorption, water retention, and evapotranspiration by plants and microorganisms. This study investigated the correlations between microbial populations, soil physicochemical properties, and treatment efficiency in a horizontal subsurface flow constructed wetland (HSSF CW) treating runoff from roads and parking lots. The methods employed included storm event monitoring, water quality analysis, soil sampling, soil quality parameter analysis, and microbial analysis. The facility achieved its highest pollutant removal efficiencies during the warm season (>15℃), with rates ranging from 33% to 74% for TSS, COD, TN, TP, and specific heavy metals including Fe, Zn, and Cd. Meanwhile, the highest removal efficiency was 35% for TOC during the cold season (≤15℃). These high removal rates can be attributed to sedimentation, adsorption, precipitation, plant uptake, and microbial transformations within the CW. Soil analysis revealed that the soil from HSSF CW had a soil organic carbon content 3.3 times higher than that of soil collected from a nearby landscape. Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in the inflow and outflow were recorded as C:N:P of 120:1.5:1 and 135.2:0.4:1, respectively, indicating an extremely low proportion of N and P compared to C, which may challenge microbial remediation efficiency. Additionally, microbial analyses indicated that the warm season was more conducive to microorganism growth, with higher abundance, richness, diversity, homogeneity, and evenness of the microbial community, as manifested in the biodiversity indices, compared to the cold season. Pollutants in stormwater runoff entering the HSSF CW fostered microbial growth, particularly for dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes, which have shown moderate to strong correlations with specific soil properties and changes in influent-effluent concentrations of water quality parameters.