• Title/Summary/Keyword: Reduction of Electromagnetic Fields

Search Result 24, Processing Time 0.019 seconds

Analysis of Annular Corrugated Horn using FDTD (환상 골진 혼 안테나의 FDTD에 의한 해석)

  • 김도현;손병문;구연건
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1067-1075
    • /
    • 2001
  • The fields at the aperture of conical horn antenna with corrugations parallel to the axis have been analyzed using FDTD(Finite Difference Time Domain). Easy calculation depending on the change of the structure of antenna and time reduction can be achieved by 2-D FDTD coding with the first-order Mur ABC(absorbing boundary condition). It is confirmed that the corrugation can reduce phase difference of field on aperture. also it is investigated that the directivity is increased by 6.1 %, 12.9%, and 28.4% with one corrugation, two corrugations, three corrugations, respectively. It is also found that the improvement of the characteristics of the antenna is not proportional to the number of the corrugation but more dependent on the location of the corrugation near the aperture than that far the aperture.

  • PDF

Quasi-3D analysis of Axial Flux Permanent Magnet Rotating Machines using Space Harmonic Methods (공간고조파법을 이용한 축 자속 영구자석 회전기기의 준(準)-3D 특성 해석)

  • Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.942-948
    • /
    • 2011
  • This paper deals with characteristic analysis of axial flux permanent magnet (AFPM) machines with axially magnetized PM rotor using quasi-3-D analysis modeling. On the basis of magnetic vector potential and a two-dimensional (2-D) polar-coordinate system, the magnetic field solutions due to various PM rotors are obtained. In particular, 3-D problem, that is, the reduction of magnetic fields near outer and inner radius of the PM is solved by introducing a special function for radial position. And then, the analytical solutions for back-emf and torque are also derived from magnetic field solutions. The predictions are shown in good agreement with those obtained from 3-D finite element analyses (FEA). Finally, it can be judged that analytical solutions for electromagnetic quantities presented in this paper are very useful for the AFPM machines in terms of following items : initial design, sensitivity analysis with design parameters, and estimation of control parameters.

An Analysis of FCCL Shielding Effect for EMF Attenuation to On-Line Electric Vehicle (On-Line Electric Vehicle의 EMF 저감을 위한 FCCL 차폐효과 분석)

  • Shim, Hyung-Wook;Kim, Jong-Woo;Cho, Dong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.770-775
    • /
    • 2014
  • According to ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields up to 300GHz, magnetic flux density which range from 3Hz to 150kHz are regulated to lower than $6.25{\mu}T$. In order to comply with its standard, OLEV(On-Line Electric Vehicle) have been designed considering EMF(Electro-Magnetic Field) reduction. However, if a current flowing in power line would be bigger for increasing power transfer efficiency, the established shield system no longer acts their role properly. In this paper, therefore, FCCL(Flexible Copper Clad Laminate) is applied to power line and pick-up devices to solve the problems. Though, the FCCL is normally utilized to insulator on circuit board, because of its high heat resistance characteristic, flexibility and thin properties, it makes effectiveness in the shielding device as well. 4 types of FCCL shielding structure are introduced to power line and pick-up devices. From the results, the FCCL which are placed in proposed positions shows maximum EMF reduction compared to the established shielding structure. Henceforth, if OLEV is applied FCCL shielding structure in practice, it will not only be more safe but also step forward to commercialization near future.

Design and Analysis for Loss Reduction of High-Speed Permanent Magnet Motor using a Soft Magnetic Composite

  • Lee, Sung-Ho;Kim, Yong-Jae;Lee, Kyu-Seok;Kim, Sung-Jin
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.444-449
    • /
    • 2015
  • Soft magnetic composites (SMCs) are especially suitable for the construction of low-cost, high-performance motors with 3-D magnetic fields. The main advantages of SMCs is that the iron particles are insulated by the surface coating and adhesive used for composite bonding, the eddy-current loss is much lower than that in laminated steels, especially at higher frequencies, and the hysteresis loss becomes the dominant component of core losses. These properties enable machines to operate at higher frequencies, resulting in reduced machine size and weight. In this paper, 3-D topologies are proposed that enable the application of SMCs to effectively reduce losses in high-speed permanent magnet (PM) motors. In addition, the electromagnetic field characteristics of the motor topologies are evaluated and compared using a non-linear finite element method (FEM) based on 3-D numerical analysis, and the feasibility of the motor designs is validated.