• 제목/요약/키워드: Reduction facility

검색결과 616건 처리시간 0.026초

High Temperature Corrosion Effect of Superheater Materials by Alkali Chlorides (염화알칼리에 의한 과열기 소재의 고온부식 영향)

  • Kim, Beomjong;Jeong, Soohwa;Kim, Hyesoo;Ryu, Changkook;Lee, Uendo
    • Clean Technology
    • /
    • 제24권4호
    • /
    • pp.339-347
    • /
    • 2018
  • In order to cope with environmental problems and climate change caused by fossil fuels, renewable energy supply is increasing year by year. Currently, waste energy accounts for 60% of renewable energy production. However, waste has a lower calorific value than fossil fuels and contains various harmful substances, which causes serious problems when applied to power generation boilers. In particular, the chlorine in the waste fuel increases slagging and fouling of boiler heat exchangers, leading to a reduction in thermal efficiency and the main cause of high temperature corrosion, lowering facility operation rate and increasing operating cost. In this study, the high temperature corrosion experiments of superheater materials (ASME SA213/ASTM A213 T2, T12 and T22 alloy steel) by alkali chlorides were conducted, and their corrosion characteristics were analyzed by the weight loss method and SEM-EDS. Experiments show that the higher the temperature and chloride content, the more corrosion occurs, and KCl further corrodes the materials compared to NaCl under the same condition. In addition, the higher the chromium content of the material, the better the corrosion resistance to the alkali chlorides.

Utilization and Expenditure of Health Care and Long-term Care at the End of Life: Evidence from Korea (장기요양 인정자의 사망 전 의료 및 요양서비스 이용 양상 분석)

  • Han, Eun-jeong;Hwang, RahIl;Lee, Jung-suk
    • 한국사회정책
    • /
    • 제25권1호
    • /
    • pp.99-123
    • /
    • 2018
  • Purpose: This study empirically investigates the utilization and expenditure of health care and long-term care at the last year of life for long-term care beneficiaries in Korea. Methods: This study used National Health Insurance and Long-term Care Insurance claims data of 271,474 LTCI beneficiaries, who died from July 2008 to December 2012. Their cause of death, place of death, health care costs, and the provision of aggressive care were analyzed. Results: Cardio-vascular disease(29.8%) and cancer(15.3%) were reported as their major cause of death, and hospital(64.4%), home(22.0%), social care facility(9.2%) were analyzed as the place of death. 99.3% of subjects used both health care and long-term care during the last 1 year of life. The average survival period were 516.2 days after they were LTCI beneficiaries. The health care expenditure gradually increased near the death, and the last month were three times more rather than the first month. Furthermore, 31.8% experienced some aggressive cares(CPR, blood transfusion, hemo-dialysis, etc.) at the last month of life. Conclusion: The results of this study suggest that it is important to develop the end of life care policies(for example, hospice, advanced care directives) for the LTCI beneficiaries. They might contribute to the improvement of quality of life and the reduction of health care expenditure of the elderly at the end-of-life.

A Study on Contribution to Reducing Chemical Accidents of Reporting for Awarding a Contract of Hazardous Chemicals (유해화학물질 도급신고 제도가 화학사고 감소에 미치는 영향 연구)

  • Kim, Sungbum;Kwak, Daehoon;Jeong, Seongkyeong;Kim, Heetae;Mun, Dahui;Oh, Jun
    • Journal of the Society of Disaster Information
    • /
    • 제15권3호
    • /
    • pp.409-417
    • /
    • 2019
  • Purpose: Since the implementation of the Chemical Substance Management Act, data on the number of occurrences by annual chemical accident in Korea and the contractor's contract data received from the competent authority were used. After the implementation of the contract reporting system, the contribution to the reduction of chemical accidents is summarized by statistical data. The characteristics of each region, month, type and those of similar industries and human life were compared and analyzed. Method: 4 years of chemical accident statistics from 2015 to 2018 and since 2003, we have used data from the Chemical Safety Clearing-House (CSC), which provides safety information on cases of chemical accidents. Results and Conclusion: The risk of accidents increases as a number of unskilled workers are put into the workplace during the period when the hazardous chemical handling process is temporarily suspended. Through the reporting for awarding a contract, the operators are strengthening the safety management of chemical accidents by educating unskilled workers and wearing personal protective equipment.

Seismic Performance Evaluation of the Li-Polymer Battery Rack System for Nuclear Power Plant (원자력발전소용 리튬폴리머 배터리 랙 시스템의 내진성능평가)

  • Kim, Si-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제20권5호
    • /
    • pp.13-19
    • /
    • 2019
  • After the Fukushima nuclear accident, a new power supply using a lithium polymer battery has been proposed the first time in the world as the safety of the emergency battery facility has been required. It is required to have the safety of the rack system in which the battery device is installed in order to apply the proposed technology to the field. Therefore, the purpose of this study is to evaluate the seismic performance of string and rack frame for lithium-polymer battery devices developed for the first time in the world to satisfy 72 hours capacity. (1) The natural frequency of the unit rack system was 9 Hz, and the natural frequency before and after the earthquake load did not change. This means that the connection between members is secured against the design earthquake load. (2) he vibration reduction effect by string design was about 20%. (3) As a result of the seismic performance test under OBE and SSE conditions, the rack frame system was confirmed to be safe. Therefore, the proposed rack system can be applied to the nuclear power plant because the rack system has been verified structural safety to the required seismic forces.

Analysis of the Fine Particulate Matter Particle Size Fraction Emitted from Facilities Using Solid Refuse Fuel (고형연료제품 사용시설에서 배출되는 미세먼지 입경분율 분석)

  • You, Han-Jo;Jung, Yeon-Hoon;Kim, Jin-guil;Shin, Hyung-Soon;Lim, Yoon-Jung;Lee, Sang-Soo;Son, Hae-Jun;Lim, Sam-Hwa;Kim, Jong-Su
    • Journal of Environmental Health Sciences
    • /
    • 제46권6호
    • /
    • pp.719-725
    • /
    • 2020
  • Objectives: With the growth of national interest in fine particulate matter, many complaints about pollutants emitted from air pollution emitting facilities have arisen in recent years. In particular, it is thought that a large volume of particulate pollutants are discharged from workplaces that use Solid Refuse Fuel (SRF). Therefore, particulate contaminants generated from SRF were measured and analyzed in this study in terms of respective particle sizes. Methods: In this study, particulate matter in exhaust gas was measured by applying US EPA method 201a using a cyclone. This method measures Filterable Particulate Matter (FPM), and does not consider the Condensable Particulate Matter (CPM) that forms particles in the atmosphere after being discharged as a gas in the exhaust gas. Results: The mass concentration of Total Suspended Particles (TSP) in the four SRF-using facilities was 1.16 to 11.21 mg/Sm3, indicating a very large concentration deviation of about 10 times. When the fuel input method was the continuous injection type, particulate matter larger than 10 ㎛ diameter showed the highest particle size fraction, followed by particulate matter smaller than 10 ㎛ and larger than 2.5 ㎛, and particulate matter of 2.5 ㎛ or less. Contrary to the continuous injection type, the batch injection type had the smallest particle size fraction of particulate matter larger than 10 ㎛. The overall particulate matter decreased as the operating load factor decreased from 100% to 60% at the batch input type D plant. In addition, as incomplete combustion significantly decreased, the particle size fraction also changed significantly. Both TSP and heavy metals (six items) satisfied the emissions standards. The measured value of the emission factor was 38-99% smaller than the existing emissions factor. Conclusions: In the batch injection facility, the particulate matter decreased as the operating load factor decreased, as did the particle size fraction of the particulate matter. These results will help the selection of effective methods such as reducing the operating load factor instead of adjusting the operating time during emergency reduction measures.

Optimal Management Scheme for Phosphorus Discharged from Public Sewage Treatment Plant Located in Upstream Basin of Paldang Lake (팔당호 상류수계에 위치한 공공 하수종말처리시설의 총인 배출 최적관리)

  • Woo, Younggug;Park, Eunyoung;Jeon, Yangkun;Jeong, Myungsuk;Rim, Jaymyung
    • Journal of Korean Society on Water Environment
    • /
    • 제27권2호
    • /
    • pp.200-209
    • /
    • 2011
  • The purpose of the study is to optimally manage sewage treatment plant with analysis of phosphorus contribution and improvement of water quality contributing rate in the effect of inflowing point of effluent and Pal-Dang lake after reducing T-P discharge from large scale public sewage treatment plant at upstream of Pal-Dang lake. Also, this study, for enforcement of T-P in effluent, plans optimal management of effluent T-P through examining propriety of environmental, technological, and economical aspect such as water quality standard of domestic and foreign T-P and related policy. In regarding optimal management of T-P discharged from public sewage treatment plant located in upstream of Pal-Dang lake, the study drew following conclusions. With the optimal management of public sewage treatment plant, it showed that a pollution level became higher in the order of Sumgang E in South-Han river, C in Dalcheon, B1 B2, A in North-Han river, and J in Kyungancheon, and it is required reduction of T-P first. The highest value in analysis of benefit-costs from sewage treatment plant in the selected research area was Kyungan B, and the others are with the order of Jojong A, Bokha A, Kyungan A, and Yanghwa A. With result of this study, all 14 areas are required more enforced phosphorus treatment. The study resulted that the most top priority areas were Hangang F, Sumgang B, and Gyungan A, top priority areas were Bokha A, Dalcheon B, and Cheongmi A, priority areas were Hangang E, Heukcheon A, Gyungan B, and Jojong A, and potential areas were Sumgang A, Yanghwa A, Dalcheon A, and Hangang D. It seems to be appropriate to apply 0.2 mg/L of T-P treatment for water supply source reservation, 0.5 mg/L for the other areas by locally, and 0.2~0.5 mg/L for biological nitrogen phosphorus treatment method and 0.5~1 mg/L for Conventional Activated Sludge by technologically. Also, it may be appropriate to apply 0.2 mg/L for the most top priority area(I), 0.3 mg/L for the top priority area(II), 0.4 mg/L for priority area(III), and 0.5 mg/L for potential area(IV) by the separation of priority area.

An Experimental Study on the Performance of Expandable Steel Pipe Pile (확장형 강관말뚝의 성능에 대한 실험적 연구)

  • Kim, Junghoon;Kim, Uiseok;Kim, Jiyoon;Kang, Minkyu;Choi, Hangseok
    • Journal of the Korean GEO-environmental Society
    • /
    • 제23권1호
    • /
    • pp.39-49
    • /
    • 2022
  • Expandable steel pipe piles are installed by inserting expansion equipment to increase the cross-sectional area of steel pipes, which can improve the pile performance compared to micro-piles. In this paper, a hydraulic expansion device was developed to expand steel pipe piles in practice. A series of laboratory and field tests were conducted to verify the performance of the developed expansion device to expand steel pipes. The expansion capability and expandable range was evaluated by measuring the strain and expansion time at the maximum pressure of the hydraulic expansion device. The thinner steel pipe, the larger strain but longer expansion time required in the test. For example, the 4.0-mm-thick steel pipe showed strain reduction by 30% and a decrease in the required expansion time by 40% compared to the 2.9-mm-thick steel pipe. In addition, in-situ expansion tests were performed to verify the expandability of steel pipes under the ground, and the exhumed specimen showed clear expanded sections. The structural integrity was determined by comparing the material performance the original and expanded specimens.

Study on the Nonlinear Analysis Model for Seismic Performance Evaluation of School Buildings Retrofitted with Infilled Steel Frame with Brace (철골 끼움가새골조로 보강된 학교건물의 내진성능평가를 위한 비선형 해석 모델에 관한 연구)

  • Yoo, Suk-Hyeong;Ko, Kwan-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제26권4호
    • /
    • pp.65-72
    • /
    • 2022
  • Recently, damage to buildings due to earthquakes in Korea occurred mainly in school buildings and Piloti-type multi-family houses, highlighting the need for seismic retrofit for buildings of the same type. In the early days of the seismic retrofit project for school facilities, various patented methods using dampers as a ductile seismic retrofit method were applied without sufficient verification procedures. However, in 「School Facility Seismic Performance Evaluation and Retrofit Manual, 2021」, when the patented method is applied, it must be applied through a separate strict verification procedure, and instead, the strength/stiffness retrofit method was induced as a general method. In practice,when evaluating seismic performance for retrofit by infilled steel frame with brace, the analysis model is constructed by directly connecting only the steel brace to the existing RC member. However, if the frame is removed from the analysis model of the infilled steel frame with brace, the force reduction occurring on the existing RC member near the retrofit is considered to be very large, and this is judged to affect the review of whether to retrofit the foundation or not. Therefore, in this study, preliminary analysis with variables such as whether or not steel frame is taken into account and frame link method for the analysis model of RC school building retrofitted by infilled steel frame with brace and nonlinear analysis for actual 3-story school building was performed, and basic data for rational analysis model setting were presented by comparing preliminary analysis and pushover analysis results for each variable.

Cleaning Methods to Effectively Remove Peanut Allergens from Food Facilities or Utensil Surfaces (식품 시설 또는 조리도구 표면에서 땅콩 알레르겐을 효과적으로 제거하는 세척 방법)

  • Sol-A Kim;Jeong-Eun Lee;Jaemin Shin;Won-Bo Shim
    • Journal of Food Hygiene and Safety
    • /
    • 제38권4호
    • /
    • pp.228-235
    • /
    • 2023
  • Peanut is a well-known food allergen that causes adverse reactions ranging from mild urticaria to life-threatening anaphylaxis. Consumers suffering from peanut allergies should thus avoid consuming undeclared peanuts in processed foods. Therefore, effective cleaning methods are needed to remove food allergens from manufacturing facilities. To address this, wet cleaning methods with washing water at different temperatures, abstergents (peracetic acid, sodium bicarbonate, dilute sodium hypochlorite, detergent), and cleaning tools (brush, sponge, paper towel, and cotton) were investigated to remove peanuts from materials used in food manufacture, including plastics, wood, glass, and stainless steel. Peanut butter was coated on the surface of the glass, wood, stainless steel, and plastic for 30 min and cleaned using wet cleaning. The peanut residue on the cleaned surfaces was swabbed and determined using an optimized enzyme-linked immunosorbent assay (ELISA). Cleaning using a brush and hot water above 50℃ showed an effective reduction of peanut residue from the surface. However, removing peanuts from wooden surfaces was complicated. These results provide information for selecting appropriate materials in food manufacturing facilities and cleaning methods to remove food allergens. Additionally, the cleaning methods developed in this study can be applied to further research on removing other food allergens.

A Study on the Prediction of Nitrogen Oxide Emissions in Rotary Kiln Process using Machine Learning (머신러닝 기법을 이용한 로터리 킬른 공정의 질소산화물 배출예측에 관한 연구)

  • Je-Hyeung Yoo;Cheong-Yeul Park;Jae Kwon Bae
    • Journal of Industrial Convergence
    • /
    • 제21권7호
    • /
    • pp.19-27
    • /
    • 2023
  • As the secondary battery market expands, the process of producing laterite ore using the rotary kiln and electric furnace method is expanding worldwide. As ESG management expands, the management of air pollutants such as nitrogen oxides in exhaust gases is strengthened. The rotary kiln, one of the main facilities of the pyrometallurgy process, is a facility for drying and preliminary reduction of ore, and it generate nitrogen oxides, thus prediction of nitrogen oxide is important. In this study, LSTM for regression prediction and LightGBM for classification prediction were used to predict and then model optimization was performed using AutoML. When applying LSTM, the predicted value after 5 minutes was 0.86, MAE 5.13ppm, and after 40 minutes, the predicted value was 0.38 and MAE 10.84ppm. As a result of applying LightGBM for classification prediction, the test accuracy rose from 0.75 after 5 minutes to 0.61 after 40 minutes, to a level that can be used for actual operation, and as a result of model optimization through AutoML, the accuracy of the prediction after 5 minutes improved from 0.75 to 0.80 and from 0.61 to 0.70. Through this study, nitrogen oxide prediction values can be applied to actual operations to contribute to compliance with air pollutant emission regulations and ESG management.