• Title/Summary/Keyword: Reduction Potential

Search Result 2,671, Processing Time 0.032 seconds

The effect of agarwood inhalation using an electric incense burner on stress and brain waves (전기향로를 이용한 침향 흡입이 스트레스와 뇌파에 미치는 영향)

  • Park, Hyun-Duck;Weon, Hee Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.536-545
    • /
    • 2021
  • This study was conducted to investigate the effect of agarwood (Thymelaeaceae) inhalation using an electric incense burner on stress and brain waves. Sixteen participants were included in the study during the period from September 2019 to April 2020. Participant recruitment was undertaken by the 'H' center. This paper focused on stress reduction and compared the differences in stress and brain waves before and after agarwood inhalation using an electric incense burner. Electroencephalography was measured by a 19 Channel, Brainmaster Discovery, and analyzed using a NeuroGuide, LORETA (Brain Mapping). The analysis of technical statistics was carried out using SPSS/WIN 21.0 and the Wilcoxon signed-rank test. The study observed that the stress response index was reduced by a significance level of 0.01 in patients with anxiety, depression, and somatization disorders after agarwood inhalation. Secondly, alpha waves were increased by a significance level of 0.05, in 18 out of 19 regions measured, except FP 1. The difference after agarwood inhalation was the most significant in the region that affects emotion. Thirdly, a LORETA analysis found that alpha waves were increased in the brain region (BA 40) predominantly responsible for memory and emotion. This result clarifies that agarwood inhalation using an electric incense burner reduced stress and had a positive effect on brain waves and hence, has potential as an alternative therapy.

Effect of Biochar Application on Nitrous Oxide Emission in the Soil with Different Types of Nitrogen Fertilizer During Corn (Zea may) Cultivation (옥수수 재배지 아산화질소 배출에 대한 질소비료와 바이오차 시용 효과)

  • Lee, Sun-il;Kim, Gun-yeob;Choi, Eun-jung;Lee, Jong-sik;Gwon, Hyo-Suk;Shin, Joung-du
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.297-304
    • /
    • 2020
  • BACKGROUND: Emission of nitrous oxide (N2O) from the soil is expected to depend on the types of nitrogen fertilizer used. Biochar has recently been proposed as a potential mitigation of climate change by reducing the N2O emission. Although laboratory studies reported that biochar applications could reduce N2O emission, the number of field-based studies is still limited. Therefore, a field experiment was conducted to investigate the effect of biochar on N2O emission when different nitrogen fertilizers were applied in corn cultivated field. METHODS AND RESULTS: The field experiment consisted of six treatments: urea fertilizer without biochar (U), ammonium sulfate fertilizer without biochar (A), oil cake fertilizer without biochar (O), urea fertilizer with biochar (U+B), ammonium sulfate fertilizer with biochar (A+B), and oil cake fertilizer with biochar (O+B). Biochar was applied at a rate of 10 t/ha. Greenhouse gas fluxes were measured during growing seasons using static vented chambers. The cumulative N2O emissions were 0.99 kg/ha in the U, 1.23 kg/ha in the A, 3.25 kg/ha in the O, 1.19 kg/ha in the U+B, 0.86 kg/ha in the A+B, and 1.55 kg/ha in the O+B. CONCLUSION: It was found that N2O emission was related to application of both nitrogen fertilizer type and biochar. In particular, the N2O reduction effect was the highest in the corn field incorporated with biochar when oil cake was applied to the soil.

Environment-friendly Processing Technologies of Mine Tailings: Research on the Characteristics of Mine Tailings when Developing of Deep Sea Mineral Resources (선광잔류물의 친환경적 처리 기술: 심해저광물자원개발시 발생하는 선광잔류물 특성 연구)

  • Moon, Inkyeong;Yoo, Chanmin;Kim, Jonguk
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.781-792
    • /
    • 2020
  • Mine tailings, which are inevitably formed by the development of manganese nodules, manganese crusts, and hydrothermal seafloor deposits, have attracted attention because of their quantity and potential toxicity. However, there is a lack of data on the quantity of mine tailings being generated, their physicochemical properties, and their effects as environmental hazards and on marine ecosystems in general. The importance of treating mine tailings in an environmentally friendly manner has been recognized recently and related reduction/treatment methods are being considered. In the case of deep-sea mineral resource development, if mine tailings cannot be treated aboard a ship, the issue becomes one of the cost of transporting them to land and solving the problem of environmental pollution there. Therefore, the Korea Institute of Ocean Science and Technology conducted research on the harmfulness of mine tailings, their effect on marine ecosystem, the diffusion model of contaminated particles, and candidate purification treatment technologies based on five representative controlling factors: 1) effects of pollution /on the environment, 2) effects of environmental/ biological hazards, 3) diffusion of particles, 4) mineral dressings, and 5) reducing/processing mine tailings. The results of this study can provide a basis for minimizing environmental problems by providing scientific evidences of the environmental effects of mine tailings. In addition, it is also expected that these results could be applied to the treatment of pollutants of different origins and at land-based mining waste sites.

Dredging Bottom Sediments of Seoha Weir at the Downstream of Kyongan Stream can be Used as a Feasible Pollutant Load Reduction Option in the Total Pollutant Load Management System of Kwangju City? (경안천 서하보 수저퇴적물 준설이 경기도 광주시 수질오염총량관리에 있어 추가적인 부하량 삭감수단으로써 타당한가?)

  • Yu, Seung-Hoon;Lee, Bum-Yeon;Lee, Kang-Hyun;Park, Shin Jung;Lee, Chang-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.19-29
    • /
    • 2011
  • In order to assess the influences of bottom sediment on water quality, following measurement were made. (1) Estimations of pollutant loads from the bottom sediment based on mass balance concept, (2) measurements of pollutant concentrations in the sediment to assess the pollution level and influence potential, (3) in situ and laboratory measurements of Sediment Oxygen Demants (SOD) and pollutant load (sediment release) from bottom sediment. Analyses of inflow and outflow loadings using simple mass balance show that there are some variations found according to the pollutants. However, there is no consistent evidence that the sediment can be a source of pollutants. Pollutant concentrations in the sediment range 16~724.8 mg/kg (COD), 1.68 ~12.64 mg/kg (T-P), 5.6~76.8 mg/kg (T-N), 0.32~21.6 mg/kg ($NH_3$-N), 0.092~0.544 mg/kg ($NO_2$-N), 4.8~18.4 mg/kg ($NO_3$-N), and 1.59~11.23 mg/kg ($PO_4$-P). Measured SOD ranges $0.190{\sim}0.802g{\cdot}m^{-2}{\cdot}d^{-1}$ and measured release rate ranges $-1618.42{\sim}10mg/m^2{\cdot}d$(COD), $-12{\sim}16mg/m^2{\cdot}d$(T-P), $-197.37{\sim}140mg/m^2{\cdot}d$(T-N), $0.4{\sim}74.32mg/m^2{\cdot}d$($NH_3$-N), $-2.04{\sim}0.8mg/m^2{\cdot}d$ ($NO_2$-N), $-70{\sim}40mg/m^2{\cdot}d$ ($NO_3$-N), and $-26.11{\sim}28.55mg/m^2{\cdot}d$($PO_4$-P). All study results indicate that bottom sediments in the Seoha weir show only limited effects on the water quality. It implies that sediment dredging is not an effective option or management measure to reduce pollutant loading.

Korea Total Diet Study-Based Risk Assessment on Contaminants Formed During Manufacture, Preparation and Storage of Food

  • Kwon, Kisung;Jo, Cheon-Ho;Choi, Jang-Duck
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.3
    • /
    • pp.213-219
    • /
    • 2021
  • Hazardous substances are formed during food manufacturing, processing, or cooking, and may pose a threat to food safety. Here, we present a dietary exposure assessment of Korean consumer's intake of hazardous materials through a Total Diet Study (TDS) which was conducted by the Ministry of Food and Drug Safety (MFDS). The levels of exposure to materials such as acrylamide, furan, biogenic amines, etc., were estimated and risk assessments were then performed. Acrylamide and furan were selected as hazards with high priority of reduction control due to their having a margin of exposure (MOE) lower than 10,000. Risk assessment of exposure to ethyl carbamate, benzene and 3-MCPD showed MOEs higher than 100,000, indicating "safe". Dietary exposure to polycyclic aromatic hydrocarbons and benzopyrene was also found to be safe MOE levels >10,000. In addition, the results indicated safe MOEs (>1,000,000) for heterocyclic amines, nitrosamines, and biogenic amines. Most of the potential food contaminants were being kept at safe levels, however, it is necessary to continue to monitor and control exposure levels in accordance with the 'as low as reasonably achievable' (ALARA) principle.

Groundwater Quality Characteristics of Pollution Concerned Area in Gyeongnam Using Groundwater Quality Monitoring Data (지하수수질측정망 자료를 활용한 경남 오염우려지역의 지하수 수질 특성)

  • Cha, Suyeon;Seo, Yang Gon
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.174-181
    • /
    • 2021
  • This study analyzed the groundwater quality characteristics according to the main source of pollution and quarter (season) by using data from the pollution exclusive monitoring network in the Gyeongsangnam-do area for five years (2013-2017). The main source of pollution was the industrial complex areas, waste mines, and sewage treatment facilities. The analysis items were field measurement items (water temperature, pH, electrical conductivity, dissolved oxygen, oxide reduction potential), positive ions, and negative ions. Water temperature and pH did not vary significantly according to the main source of pollution. In industrial complex areas, the value of electrical conductivity was the highest, and dissolved oxygen value was the lowest. The mean concentration of positive and negative ions was the largest in industrial complex areas, followed by sewage treatment facilities and waste mines. It was shown that the concentration of sodium ion was the highest in industrial complex areas and calcium ion in waste mines and sewage treatment facilities. The concentration of bicarbonate ion was the highest in all main sources of pollution. Water temperature, pH, and concentrations of cations and anions did not vary significantly from quarter to quarter. Of the water quality types, the Na-HCO3 type accounted for the highest proportion, but the Na-Cl type, which has a high possibility of external contamination, accounted for about 20% of the total data in the pollution exclusive monitoring network.

A Study on Irreversible Degradation through OCV Reduction and Recovery Behavior in the Electrochemical Degradation Process of PEMFC Polymer Membrane (PEMFC 고분자 막의 전기화학적 열화과정에서 OCV 감소 및 회복 거동을 통한 비가역적 열화 연구)

  • Yoo, Donggeun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.217-222
    • /
    • 2022
  • It is very important to analyze the OCV change behavior during the open circuit potential holding (OCV holding) process, which accelerates the evaluation of the electrochemical durability of the PEMFC membrane. In this study, an empirical formula using the experimental data of three MEAs with different durability was created and compared. The durability evaluation time of the reinforced membrane MEA without radical scavenger inside the membrane was 383 h, and the durability evaluation time of the reinforced membrane MEA with radical scavenger inside the membrane was 1,000 and 1,650 h, respectively. The degradation of the membrane was divided into the reversible degradation that can be recovered by activation and the irreversible degradation that is not recovered. The irreversible degradation of the membrane was indicated by an increase in hydrogen permeability, and the change in hydrogen permeability was similar to the irreversible degradation constant c of all three MEAs. The initiation of irreversible deterioration without recovery is indicated by an increase in hydrogen permeability, and the OCV is not recovered due to an increase in hydrogen permeability, so the slope of the OCV recovery line (ORL) decreases, which can be confirmed by an increase in the constant c value of the empirical formula.

Sensitivity Analysis of dVm/dtMax_repol to Ion Channel Conductance for Prediction of Torsades de Pointes Risk (다형 심실빈맥의 예측을 위한 dVm/dtMax_repol의 이온채널 전도도에 대한 민감도 분석)

  • Jeong, Da Un;Yoo, Yedam;Marcellinus, Aroli;Lim, Ki Moo
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.331-340
    • /
    • 2022
  • Early afterdepolarization (EAD), a significant cause of fatal ventricular arrhythmias including Torsade de Pointes (TdP) in long QT syndromes, is a depolarizing afterpotential at the plateau or repolarization phase in action potential (AP) profile early before completing one pace. AP duration prolongation is related to EAD but is not necessarily accounted for EAD. Several computational studies suggested EAD can form from an abnormality in the late plateau and/or repolarization phase of AP shape. In this sense, we hypothesized the slope during repolarization has the characteristics to predict TdP risk, mainly focusing on the maximum slope during repolarization (dVm/dtmax_repol). This study aimed to predict the sensitivity of dVm/dtmax_repol to ion channel conductances as a TdP risk metric through a population simulation considering multiple effects of simultaneous reduction in six ion channel conductances of gNaL, gKr, gKs, gto, gK1, and gCaL. Additionally, we verified the availability of dVm/dtmax_repol for TdP risk prediction through the correlation analysis with qNet, the representative TdP metric. We performed the population simulations based on the methodology of Gemmel et al. using the human ventricular myocyte model of Dutta et al. Among the sixion channel conductances, dVm/dtmax_repol and qNet responded most sensitively to the change in gKr, followed by gNaL. Furthermore, dVm/dtmax_repol showed a statistically significant high negative correlation with qNet. The dVm/dtmax_repol values were significantly different according to three TdP risk levels of high, intermediate, and low by qNet (p<0.001). In conclusion, we suggested dVm/dtmax_repol as a new biomarker metric for TdP risk assessment.

SF3B4 Depletion Retards the Growth of A549 Non-Small Cell Lung Cancer Cells via UBE4B-Mediated Regulation of p53/p21 and p27 Expression

  • Kim, Hyungmin;Lee, Jeehan;Jung, Soon-Young;Yun, Hye Hyeon;Ko, Jeong-Heon;Lee, Jeong-Hwa
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.718-728
    • /
    • 2022
  • Splicing factor B subunit 4 (SF3B4), a component of the U2-pre-mRNA spliceosomal complex, contributes to tumorigenesis in several types of tumors. However, the oncogenic potential of SF3B4 in lung cancer has not yet been determined. The in vivo expression profiles of SF3B4 in non-small cell lung cancer (NSCLC) from publicly available data revealed a significant increase in SF3B4 expression in tumor tissues compared to that in normal tissues. The impact of SF3B4 deletion on the growth of NSCLC cells was determined using a siRNA strategy in A549 lung adenocarcinoma cells. SF3B4 silencing resulted in marked retardation of the A549 cell proliferation, accompanied by the accumulation of cells at the G0/G1 phase and increased expression of p27, p21, and p53. Double knockdown of SF3B4 and p53 resulted in the restoration of p21 expression and partial recovery of cell proliferation, indicating that the p53/p21 axis is involved, at least in part, in the SF3B4-mediated regulation of A549 cell proliferation. We also provided ubiquitination factor E4B (UBE4B) is essential for p53 accumulation after SF3B4 depletion based on followings. First, co-immunoprecipitation showed that SF3B4 interacts with UBE4B. Furthermore, UBE4B levels were decreased by SF3B4 depletion. UBE4B depletion, in turn, reproduced the outcome of SF3B4 depletion, including reduction of polyubiquitinated p53 levels, subsequent induction of p53/p21 and p27, and proliferation retardation. Collectively, our findings indicate the important role of SF3B4 in the regulation of A549 cell proliferation through the UBE4B/p53/p21 axis and p27, implicating the therapeutic strategies for NSCLC targeting SF3B4 and UBE4B.

Visual Log Grading and Evaluation of Lamina Yield for Manufacturing Structural Glued Laminated Timber of Pitch Pine (리기다소나무 원목형질 조사 및 구조용집성재 제조 수율 평가)

  • Shim, Sangro;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.90-95
    • /
    • 2004
  • Pitch pine (Pinus rigida) has been planted in Korean forests for several decades, primarily for erosion control and use as a fuel supply. To enhance its value, and especially potential use as lamina for structural glued laminated timber (glulam), log quality and lumber yield of pitch pine were evaluated in this study. Trees from pure pitch pine stands with an average diameter at breast height of 32 cm were felled and bucked into 3.6m long 15 cm minimum butt-end diameter logs. Over 80% of the logs were classified to No.2 or No.3 visual grade group. Upon sawing total lumber yield was 55.2%, 39.9% for structural glulam lamina, 7.2% for louver, and 8.1% for miscellaneous use. The final lumber yield for manufacturing structural glulam, after cross-cutting to eliminate knots and finger jointing, was only 15.3%. To enhance this manufacturing yield requires that the rate of knot-included lumber used as lamina be raised. However arrangement of the knot-included lamina, whose mechanical properties need to be accurately evaluated, must be optimized to minimize any reduction to the structural glulam strength. The log quality and lumber yield of pitch pine evaluated in this study are expected to facilitate proper planning for wood product manufacture in the Korean lumbering and glulam industrial field, which has not previously dealt with this species.