• Title/Summary/Keyword: Reducing Carbon

Search Result 909, Processing Time 0.054 seconds

The Effect of Activated Carbon Fiber on the Shelf Life of the Propellants (추진제 저장수명에 미치는 활성탄소섬유의 영향)

  • Yoon Keun-sig;Lee Jong-chan
    • Journal of Applied Reliability
    • /
    • v.5 no.3
    • /
    • pp.343-355
    • /
    • 2005
  • As the propellants decompose, they release nitrogen oxides which reduce the shelf life of the propellants by accelerating decomposition rate. The activated carbon fiber was used to extend the shelf life of the propellants that was stockpiled by the military. It is found that the activated carbon fiber adsorbs the nitrogen oxides which were produced by spontaneous reaction of the propellants. As a result, the activated carbon fiber extend the shelf life of the propellants by reducing decomposition rate of the propellants. If 20g of propellant store with 2g of activated carbon fiber, the shelf life of the propellants can be lengthened by 1.4 times.

  • PDF

Three-Dimensional Fluid Flow Analysis of Automotive Carbon Canister for Reducing Evaporative Emissions (증발가스 배출물 억제를 위한 자동차용 캐니스터의 3차원 유동장 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.85-93
    • /
    • 2001
  • Minimized canister flow restriction and maximized flow uniformity are desired to maximize a purge capability. With the impending ORVR(On Board Refueling Vapor Recovery) systems, the reduction of restriction and increase of flow uniformity in a carbon canister becomes even more critical to meet the stringent regulation. In this study, three-dimensional numerical simulations have been performed to investigate the three-dimensional internal flow patterns in a carbon canister during purge. The effects of the declined angle of the purge pipe and the number of partitions on the pressure drop and purge efficiency in a carbon packed bed are examined. Results show that the purge efficiency and space velocity distribution are affected in the upstream region of 40% of total canister bed by porosity of carbon granule and angle of purge pipe. It is also found that the purge efficiency decreases with increasing the number of partitions.

  • PDF

Biocompatible Individual Dispersion of Single-walled Carbon Nanotubes

  • Najeeb, C.K.;Kim, Duck-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.529-529
    • /
    • 2012
  • Dispersion of carbon nanotubes in biocompatible media are of particular interest for diverse biomedical and nanomedicine applications. Various biomolecules and biopolymers such as DNA, proteins, poly L-lysine, starch, gelatin, steroid biosurfactants, and chitosan have shown capability for the effective dispersion of carbon nanotubes in water. Chitosan has demonstrated capacity for effective dispersion of single-walled carbon nanotubes (SWCNTs) in acidic medium and it also showed tendency to preferentially disperse smaller diameter nanotubes. Chemical functionalizations of chitosan enable its solubility in neutral pH water by reducing the intra and inter molecular hydrogen bonding. Herein, we present a neutral pH water soluble chitosan derivative, chitosan-hydroxyphenyl acetamide (CHPA), obtained by functionalizing the amino groups of chitosan with 4-hydroxyphenyl acetic acid, as an efficient biocompatible dispersant for debundling and solubilization of SWNTs in neutral aqueous solutions. Various process conditions for individual dispersion of SWCNTs are analyzed based on optical absorption and Raman spectroscopy.

  • PDF

Application of concrete nanocomposite to improvement in rehabilitation and decrease sports-related injuries in sports flooring

  • Hao Wang;Huiwu Zhang
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.75-84
    • /
    • 2023
  • Currently, polymer matrix nanocomposites (PMCs) are a prominent area of research due to their outstanding mechanical, thermal, and durability properties. The increase in recent studies justifies the possibility of using PMCs in structural retrofitting and reconstruction of damaged infrastructure and serving as new structural material. Using nanotechnology, nanocomposite panels in flooring combine concrete and steel, providing a very high level of performance. In sports flooring, high-performance concrete has become a challenge for reducing sports injuries and refinement in rehabilitation. As a composite material, this type of resistant concrete is one of the most durable and complex multi-phase materials. This article uses polyvinyl alcohol polymer (PVC) and multi-walled carbon nanotubes as concrete matrix fillers. Solution methods have been used for dispersing PVC and carbon nanotubes in concrete. The water-cement ratio, carbon nanotube weight ratio, and heat treatment parameters influenced the concrete nanocomposite's tensile and compressive strength. The dispersion of carbon nanotubes in cement paste and the observation of nano-microcracks in concrete was evaluated by scanning electron microscope (SEM).

A Basic Study for Smart Zero Carbon Cities (스마트 저탄소도시를 위한 기초연구)

  • Shin, Wan Sun;Choi, Seong Ho;Park, Jin Chul;Song, Yong Woo
    • Land and Housing Review
    • /
    • v.10 no.1
    • /
    • pp.19-23
    • /
    • 2019
  • In recent years, many studies have been conducted on smart low carbon cities through the fusion of ICT information technology for the purpose of reducing carbon. In this study, we investigated 13 cities in three continents that implement low-carbon city policies and analyzed the size, economic and social characteristics of each city to identify the degree of dynamic mechanism for carbon reduction. To this end, we quantified the elements of the city and analyzed the basic requirements for low-carbon cities using the TOPSIS method. The study found that most cities were better able to activate institutions and cultural conditions, facilities and functional conditions, and economic and industrial conditions than other engines, and these three were the main forms of power for smart low carbon cities. The results of this study are expected to be used as a basis for suggesting policy recommendations and improvement measures for future smart low carbon cities.

A Study on Improvement and Effect of Carbon Point Program for Residential Buildings in Daegu (대구광역시 주거 건축물의 이산화탄소 배출 감축을 위한 탄소포인트제의 효과 및 개선방향에 관한 연구)

  • Yeo, Myung-Kil;Jeon, Gyu-Yeob;Hong, Won-Hwa;Cho, Woong-Ho
    • Journal of the Korean housing association
    • /
    • v.23 no.4
    • /
    • pp.11-18
    • /
    • 2012
  • The amount of energy consumption in the buildings is approximately 20% of domestic energy consumption. The Carbon Point Program have been published on reduction of greenhouse gas emission in buildings under the paradigm of 'Low Carbon Green Growth'. This study focuses on the effect of 'Carbon Point Program' for residential buildings in Daegu. The amount of electricity and waterwork consumption and information of households were investigated to analyse the effect of carbon point program. The samples are situated in Deagu and are apartment in Bukgu and Suseonggu. The $CO_2$ emission is analysed by factors of energy resource and household organization between before participating and after participating in Carbon Point Program. The participation type has a difference of voluntary participation in Suseonggu and passive participation in Bukgu. Based on this investigation, average amount of $CO_2$ emission was reduced from voluntary participation households but all of them did not. To promote the effect of Carbon Point Program, this study proposes that needing the plans to raise will and activity of reducing carbon and to help participation which have disadvantage against achieving reduction.

Analysis of environmental impact of activated carbon production from wood waste

  • Kim, Mi Hyung;Jeong, In Tae;Park, Sang Bum;Kim, Jung Wk
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.117-126
    • /
    • 2019
  • Activated carbon is carbon produced from carbonaceous source materials, such as coconut shells, coals, and woods. In this study, an activated carbon production system was analyzed by carbonization and activation in terms of environmental impact and human health. The feedstock of wood wastes for the system reduced fossil fuel consumption and disposal costs. Life cycle assessment methodology was used to analyze the environmental impacts of the system, and the functional unit was one tonne of wood wastes. The boundary expansion method was applied to analyze the wood waste recycling process for activated carbon production. An environmental credit was quantified by avoided impact analysis. Specifically, greenhouse gases discharged from 1 kg of activated carbon production system by feeding wood wastes were evaluated. We found that this system reduced global warming potential of approximately $9.69E+00kg\;CO_2-eq$. compared to the process using coals. The environmental benefits for activated carbon production from wood wastes were analyzed in contrast to other disposal methods. The results showed that the activated carbon system using one tonne of wood wastes has an environmental benefit of $163kg\;CO_2-eq$. for reducing global warming potential in comparison with the same amount of wood wastes disposal by landfilling.

A modified electrode by a facile green preparation of reduced graphene oxide utilizing olive leaves extract

  • Baioun, Abeer;Kellawi, Hassan;Falah, Ahamed
    • Carbon letters
    • /
    • v.24
    • /
    • pp.47-54
    • /
    • 2017
  • Different phytochemicals obtained from various natural plant sources are used as reduction agents for preparing gold, copper, silver and platinum nanoparticles. In this work a green method of reducing graphene oxide (rGO) by an inexpensive, effective and scalable method using olive leaf aqueous extract as the reducing agent, was used to produce rGO. Both GO and rGO were prepared and investigated by ultraviolet and visible spectroscopy, Fourier-transform infrared, scanning electron microscopy, atomic force microscopy, thermogravimetric analysis, cyclic voltammetry, X-ray photoelectron spectra, electrochemical impedance spectroscopy and powder X-ray diffraction.

Thirty Six Years of Research on the Selective Reduction and Hydroboration

  • Cha, Jin-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1808-1846
    • /
    • 2011
  • From 1975 to 2011, for thirty six years, the author and his collaborators have developed a variety of reducing and hydroborating agents, and applied them to organic synthesis, which involves the 1,2-reduction of ${\alpha}$,${\beta}$-unsaturated carbonyl compounds, stereoselective reduction of cycloalkanones, regioselective ring-opening of epoxides, partial reduction of carboxylic acid derivatives to aldehydes, regioselective addition to carbon-carbon multiple bonds, etc. by utilizing metal hydrides and the newly-devised the Meerwein-Ponndorf-Verley (MPV) type reagents. Such developments provide a new synthetic methodology making possible valuable selective reductions and hydroborations, not practical previously.

Amination of Organic Azides using Tetracarbonylhydridoferrate(O) as a Reducing Agent(I) (환원시약인 테트라카르보닐철산염(O)을 이용한 유기아지드화물의 아미노화 (제1보))

  • Sang Chul Shim;Kui Nam Choi
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.437-440
    • /
    • 1985
  • Organic azides were reduced to organic amines in the presence of tetracarbonylhydridoferrate(O) as a highly selective reducing agent at room temperature under carbon monoxide atmosphere. Particularly, benzoylazide gave ethylphenylcarbamate at room temperature but gave benzamide quantitatively at -40$^{\circ}$ in the presence of tetracarbonylhydridoferrate under carbon monoxide atmosphere.

  • PDF