• 제목/요약/키워드: Reducing Building Energy

검색결과 252건 처리시간 0.022초

공동주택 바닥복사 난방시스템의 GRNN 제어 적용에 관한 연구 (A Study on GRNN Control Strategies for Floor Radiant Heating System in Residential Apartments)

  • 송재엽;안병천
    • 설비공학논문집
    • /
    • 제24권12호
    • /
    • pp.830-836
    • /
    • 2012
  • In this study, the effects of heating control methods on heating control performance and energy consumption in the floor radiant heating control system of residential apartments were research by computer simulation. A general regression neural network(GRNN) control method for reducing indoor temperature overshoot and saving energy in floor radiant heating system is suggested. The GRNN control method shows good responses in comparison with the conventional and outdoor reset control methods for improving indoor thermal environment and reducing energy consumption.

농촌주택에 적합한 제로에너지 하우스의 프로토타입 연구 (The Study on the Zero-Energy House Prototype of Country House)

  • 임경업;김빛나;이철성;윤종호;진경일
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.185-190
    • /
    • 2009
  • Due to the building energy consumption of total energy consumption of Korea takes over 24%, economizing building energy and using renewable energy resources is being required. To suggest the prototype of zero energy house of country house, the passive systems and active systems are applicated and simulated. In case of wall insulation system is applicated, the heating load of building is reduced. Also, clear triple pair glazing system reduced 2.1% of heating load of building. The amount of reducing heating load by infiltration is depending on the Heating system. In this model, the 0.3ACH made 14.6% saving on heating load from base infiltration 0.82ACH. The solar thermal system of active system could save 80% of DHW and PV system supplies electric power more than average consumption of year. Through the optimum process, the end use of zero energy house of country house is 36kWh/m2.yr and total energy consumption is reduced about 74.2%.

  • PDF

Energy Saving Effect and Economy Feasibility of Office Building with regard to Geometries and Orientations

  • Koh, Jae-Yoon;Zhai, John
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권1호
    • /
    • pp.15-24
    • /
    • 2009
  • The energy usage and the economical feasibility of the typical two story office building in the three urban locations of South Korea are evaluated as the eight orientations. The smallest energy consume is shown at the true south. The ranges of the low energy consume are $-3l5^{\circ}{\sim}0^{\circ}\;and\;-135^{\circ}{\sim}-180^{\circ}$. There are obvious advantages of passive solar designs such as using a fully glazed facade at the true south in the building. The General Low voltage plan is the effective way for the office building when does not required the high voltage electricity. The energy cost of KEPCO is compared to that of XCEL ENERGY. The portion of the customer charge of XCEL ENERGY is about 10% but it is about 50% of the total tariff of KEPCO. The effective way to save the energy cost is by reducing the operating energy of XCEL ENERGY plane but the most effective way is reduce the contracting energy of KEPCO plane.

건물데이터를 통한 건물에너지 절감 가능성에 대한 연구 : 도시단위의 거시적 분석부터 미시적 건물에너지 분석사례 (A Study of the Possibility of Building Energy Saving through the Building Data : A Case Study of Macro to Micro Building Energy Analysis)

  • 조수연;이승복
    • 설비공학논문집
    • /
    • 제29권11호
    • /
    • pp.580-591
    • /
    • 2017
  • In accordance with 2015 Paris agreement, each individual country around the world should voluntarily propose not only its (individual) reduction target, but also actively develop and present expansion targets of its scope and concrete reduction goals exceeding the previous ones. Accordingly, it is necessary to prepare a macroscopic, long-range strategy for reducing energy consumption and greenhouse gas emissions, which can cover a single building, town, city and eventually even a province. The purpose of this research is to gather and compile government-acquired data from various sources and (in accordance with contents and specificity), combine building data by stages by using multi-variable matrix and then analyze the significance of combined data for each stage. The first order data presents the probability and the cost effectiveness of energy saving on the scale of a city or a province, based only upon general information, size and power consumption of buildings. The second order data can identify a pattern of energy consumption for a building of a specific purpose and which tends to consume a larger amount of energy during one particular season (than others). Finally, the third order data can derive influential factors (base load, humidity) from the energy consumption pattern of a building, and thus propose an informed and practical energy-saving method to be applied in real time.

블라인드 도입과 창면적비에 따른 표준건축물의 에너지 수요 저감에 대한 시뮬레이션 연구 (A Study on Simulation for Decreasing Energy Demand According to Window-to-Wall Ratio and Installation Blind System in Building)

  • 강석민;이태규;김정욱
    • 한국건축친환경설비학회 논문집
    • /
    • 제12권6호
    • /
    • pp.531-542
    • /
    • 2018
  • Building energy demands have highly risen in modern society; thus, It is necessary to reduce building energy demands especially commercial buildings adopting a curtain wall architecture. Curtain wall architectures have a high ratio of windows which is a vulnerable in heat insulations as cladding. In order to complement insulation performance of windows in these buildings, there are various methods adopted often such as installing blinds, wing wall and films. There are two suggestions of this paper. 1) WWR (Window-to-Wall Ratio) makes a impaction of energy demands in buildings. 2) Another one is an efficiency of blind systems which are installed in buildings in order to reduce cooling demands. It is also critical to make fundamental model for low-energy building construction by processing a lot of simulation As a result by this study, 1) an external blind system is more useful for reducing cooling energy demands rather than an internal blind system. 2) Buildings which have a large window require more amount of cooling demands. In case of WWR 45%, it needs more cooling energy rather than WWR 15% model's 3) Adopting blind system would reduce energy demands. WWR 45% model with external blind systems reduces about 4% of cooling energy demands compared to same model without any blind systems.4) it is necessary to study an efficiency of blind systems combined with renewable energy and it will be possible to reduce more energy demand in building significantly.

시뮬레이션을 통한 노인 요양 시설의 지열 히트펌프 시스템 적용 가능성 평가 (Evaluating the Feasibility of a Ground Source Heat pump System for an Elderly Care Center through Simulation Approach)

  • 손병후;김영선;이승언
    • 한국지열·수열에너지학회논문집
    • /
    • 제19권4호
    • /
    • pp.39-52
    • /
    • 2023
  • This study analyzes the energy performance of a elderly care center building and the applicability of a ground source heat pump (GSHP) system through simulation approach. For this purpose, a building information modeling (BIM) program and an energy performance calculation program were used. The impact of the mechanical ventilation system on the energy requirements of the heating and cooling system and the indoor environment was also analyzed, focusing on the change in indoor carbon dioxide (CO2) concentration, which is a representative indicator of the indoor environment (air quality). The simulation results showed that the target building exceeds Level 7 in terms of simulated primary energy consumption or actual energy consumption. In addition, it was analyzed that the target building could not maintain the indoor CO2 concentration below the standard concentration by natural ventilation through window opening alone. Combining the GSHP system with the mechanical ventilation system (Case B and Case C) can further reduce the overall energy consumption by reducing the amount of outdoor air introduced by opening windows. The cost savings compared to the baseline case are estimated to be 67.3% for Case A, 63.7% for Case B, 65.5% for Case C, and 42.5% for Case D. It is necessary to analyze the impact of various renewable energy technologies and passive ones on the energy performance and indoor environment of elderly care centers.

옥상녹화 평지붕의 표면온도 저감효과에 대한 고찰 (A Consideration On The Surface Temperature Reducing Effect Of Green Roof System Flat Roof)

  • 이두호;이응직
    • KIEAE Journal
    • /
    • 제12권3호
    • /
    • pp.83-88
    • /
    • 2012
  • This study analyzed the measured value came out by the field test to verify the surface temperature reduction of the flat roof due to green roof, and confirmed the influence of the green roof based on it, and assessed the possibility of saving structures' energy and reducing $CO_2$ emission of structures. For the actual measurement, the differences of the average atmospheric temperature of the green roof and non-green roof flat roof were $8.67^{\circ}C$ and $0.787^{\circ}C$, and the average floor temperature gaps were $11^{\circ}C$ and $2.008^{\circ}C$ in October and November respectively. It was expected that if it's measured on around summer solstice that the temperature gets higher, the deviation of the surface temperature should be bigger, and it was confirmed that the green roof eventually raises insulating effect of structures and will influence on cooling and heating effects such as energy saving and insulating.

Recommendations for Improving Incentive Systems in the Building Sector of South Korea

  • Han, Hyesim;Kim, Jonghun;Jeong, Hakgeun;Jang, Cheolyong
    • KIEAE Journal
    • /
    • 제15권2호
    • /
    • pp.53-59
    • /
    • 2015
  • Purpose: Reducing energy consumption and greenhouse gas emissions is a primary concern throughout the world, and the building sector is a particularly efficient area for making these reductions. In South Korea, the government has recently enacted policies for "Green Growth" that, among other things, enforce regulations in the building certification rating system (BCRS) and reorganize existing incentive systems. Method: In this study, we examined regulations and incentive systems used in the United Kingdom, Germany, and the United States that encourage the use of energy efficient technologies in construction and compared these policies to those used in South Korea. We also disseminated surveys to experts in the fields of architecture, planning and design, and engineering to better understand their knowledge and perception of the BCRS and its incentive systems. Additionally, we sought their recommendations for improving these incentive systems. Result: Based on our comparative case studies of regulations and incentives in other countries, alongside recommendations from experts in South Korea, we concluded that incentive systems in South Korea are limited and require improvement. We make recommendations for strengthening existing regulations and incentives and for implementing new incentive programs.

공동주택 향별 창면적비 변화에 따른 에너지 영향도 분석 (An Effect of the Change of Orientation and Window Area Ratio upon Building Energy Requirement in Apartment Housings)

  • 김재문;이규철;이승규;김민성;민준기
    • KIEAE Journal
    • /
    • 제13권2호
    • /
    • pp.21-26
    • /
    • 2013
  • Due to the increasing concerns about the buildings which have affected the global environment, most countries have enacted a regulation for the sustainability of domestic buildings. In 2008, the Korean government started to enact a regulation of apartment and office buildings for energy saving. Many research on the sustainable apartment building focuses on $84m^2$ or larger type in response to market demand; therefore, small size type such as $46m^2$ type needs to be researched. In addition, the research on the orientation and window to wall ratio of the building have been separately studied as a means of energy reduction; therefore, the research on correlation of the orientation and window to wall ratio hasn't been fully explored yet. This paper analyzes the energy demand of the apartment building as the change of orientation and window to wall ratio among $46m^2$ and $84m^2$ type. In conclusion, when reducing the window to wall ratio, energy demand was reduced, except when the orientation of the building was between from +10 to -20 from the south.

Heating and Cooling Energy Conservation Effects by Green Roof Systems in Relation with Building Location, Usage and Number of Floors

  • Son, Hyeong Min;Park, Dong Yoon;Chang, Seong Ju
    • KIEAE Journal
    • /
    • 제14권2호
    • /
    • pp.11-19
    • /
    • 2014
  • Building energy consumption takes up almost 25% of the total energy consumption. Therefore, diversified ways, such as improving wall and window insulation, have been considered to reduce building energy consumption. Recently, green roof system has been explored as an effective alternative for dealing with reducing heating and cooling energy, thermal island effect and improving water quality. However, recent studies regarding a green roof system have only focused on building energy reduction without considering the applied usage, location, and story of the green roof system. Therefore, this study pays attention to the heating and cooling energy in relation to the applied usage, location, and story of a green roof system for investigating its impact on energy reduction. The result of simulations show that the reduction in heating energy consumption is higher when applied to Cherwon-gun province which has a continental climate condition, compared to the city of Busan that is distinguished by its warm climate. Cooling energy saving turns out to be higher when the green roof system is applied to Busan in comparison with Cherwon. As for the applied usage or function of the building, residential space acquires the highest heating and cooling energy saving effect rather than commerce, educational or office space because of HVAC's running time based on usage. When it comes to the story of the green roof, both heating and cooling energy saving become the highest when the green roof is applied to single-storied buildings. The reason is that single story building is affected by the ground largely. Generally, the variations of heating energy consumption are larger than the cooling energy consumption. The outcome of the simulations, when a green roof system is applied, indicates that the energy consumption reduction rate is dynamically responding to the applied usage, location, and story. Therefore, these factors should be counted closely for maximizing the reduction of energy consumption through green roof systems.